首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
电工技术   2篇
无线电   26篇
冶金工业   1篇
自动化技术   8篇
  2019年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1991年   7篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   6篇
  1986年   2篇
  1985年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
2.
This paper reports on an investigation of feedback control of coronal plane posture in paraplegic subjects who stand using functional neuromuscular stimulation (FNS). A feedback control system directed at regulating coronal plane hip angle in neutral position was designed, implemented, and evaluated in two paraplegic subjects. The control system included sensor mounting and signal processing techniques, a two-stage feedback controller, stimulation hardware, and a set of percutaneous intramuscular electrodes. The feedback controller consisted of two-stages in cascade: a modified discrete-time proportional-integral-derivative (PID) stage and a nonlinear single-input, multiple-output stage to determine the stimulation to be sent to several muscles. The focus of this work was on evaluating the performance of the feedback controller by comparing the response of the feedback-controlled system to that of an open-loop stimulation system. In an evaluation based on temporal response characteristics the controlled system exhibited a 41% reduction in root-mean-squared (rms) error (where error is defined as the deviation from the desired angle), a 52% reduction in steady-state error, and a 22% reduction in hip compliance. In addition, the feedback-controlled system exhibited significant reductions in variability of these measures on several days. These results demonstrate the ability of the feedback controller to improve the temporal response characteristics of the FNS control system.  相似文献   
3.
A fixed-parameter, discrete-time, first-order, feedback control system is described for regulating grasp during electrical stimulation of paralyzed muscles of the hand. The stiffness of the grasp (relationship between grasp force and grasp opening) is kept constant by linearly combining force and position feedback signals. Thus, a single continuous command signal can control the size of the grasp opening prior to object acquisition and both grasp force and opening after contact. The controller achieves this change in controlled variables by scaling and summing the force and position feedback signals, rather than by a discrete switch in control strategy. Experimental tests of the control system in quadriplegic subjects show that control can be obtained over conditions ranging from unloaded position regulation to isometric force regulation, as well as in the transition between these conditions. The robustness of the control system was evaluated during force regulation with isometric loads. Step response rise time and overshoot were much more dependent on system gain than on the location of the controller zero. Responses with rise time less than two seconds and overshoot less than 30% were obtained over a gain range up to ten, indicating good robustness to muscle gain reductions such as might be caused by fatigue.  相似文献   
4.
A real-time method for the detection of gait events that occur during the electrically stimulated locomotion of paraplegic subjects is described. It consists of a two-level algorithm for the processing of sensor signals and the determination of gait event times. Sensor signals and information about the progression of the stimulator though its pre-specified stimulation “pattern” are processed by a machine intelligence (fuzzy logic) algorithm to determine an initial estimate of the patient's current phase of gait. This is then reviewed and modified by a second algorithm that removes spurious gait estimates, and determines gait event times. These gait event times are known to the system within approximately one-half of a gait cycle. The resulting gait event detection system was successfully evaluated on three subjects. Detection accuracy is not adversely affected by day-to-day gait variability. This work resolved technical and practical issues that previously limited the real time application of these methods. In particular, cosmetically acceptable insole force transducers were used. This gait event detector is designed for use in a real time controller for the automatic adjustment of the intensity and timing of stimulation while the subject is walking using functional electrical stimulation  相似文献   
5.
6.
Nonlinear joint angle control for artificially stimulated muscle   总被引:3,自引:0,他引:3  
Designs of both open- and closed-loop controllers of electrically stimulated muscle that explicitly depend on a nonlinear mathematical model of muscle input-output properties are presented and evaluated. The muscle model consists of three factors: a muscle activation dynamics factor, an angle-torque relationship factor, and an angular velocity torque relationship factor. These factors are multiplied to relate output torque to input stimulation and joint angle. An experimental method for the determination of the parameters of this model was designed, implemented, and evaluated. An open-loop nonlinear compensator, based upon this model, was tested in an animal model. Its performance in the control of joint angle in the presence of a known load was compared with a PID controller, and with a combination of the PID controller and the nonlinear compensator. The performance of the nonlinear compensator appeared to be strongly dependent on modeling errors. Its performance was roughly equivalent to that of the PID controller alone: somewhat better when the model was accurate, and somewhat worse when it was inaccurate. Combining the nonlinear open loop compensator with the PID feedback controller improved performance when the model was accurate.  相似文献   
7.
The influence of stimulus interpulse interval (IPI) on torque output during electrically-evoked contractions was investigated for the knee extensor muscles of paralyzed subjects. The parameters measured were the rise time, magnitude, and relaxation time of the contraction at stimulus IPI's ranging from 62 to 7 ms. Torque output increased as IPI's were decreased from 62 to 15 ms. Peak torques were recorded at IPI's of 12-15 ms; IPI's less than these resulted in an insignificant loss of torque. Rise times decreased as IPI's were decreased. Relaxation time generally increased as IPI's were decreased with the longest relaxation times occurring with stimulation at an IPI of 12 ms. To demonstrate the influence of IPI on muscle fatigue, the effect of prolonged stimulation at short (12 ms) and long (50 ms) IPI's was also compared. After 30 s of stimulation with an IPI of 12 ms, mean torque had declined to 5 +/- 3 percent and after 30 s of stimulation with an IPI of 50 ms, mean torque had declined to 82 +/- 4 percent of the initial value. Knowledge of how stimulus IPI influences the response of paralyzed muscle to electrical stimulation may assist in the development of rehabilitation devices which utilize these technologies.  相似文献   
8.
Sensors for Use with Functional Neuromuscular Stimulation   总被引:3,自引:0,他引:3  
Functional neuromuscular stimulation (FNS) designates artificially applied electrical activation of muscles to restore function lost as a result of neurological lesions. FNS prostheses are currently being designed to restore urinary bladder control, standing, walking, and hand function. All of these prostheses need sensors for interaction with the human users and the environment. This paper discusses each of these prostheses with special regard to the use of sensors and the design specifications that the sensors must meet.  相似文献   
9.
Consideration is given to the control of continuous-time linear systems that possess randomly jumping parameters which can be described by finite-state Markov processes. The relationship between appropriately defined controllability, stabilizability properties, and the solution of the infinite time jump linear quadratic (JLQ) optimal control problems is also examined. Although the solution of the continuous-time Markov JLQ problem with finite or infinite time horizons is known, only sufficient conditions for the existence of finite cost, constant, stabilizing controls for the infinite time problem appear in the literature. In this paper necessary and sufficient conditions are established. These conditions are based on new definitions of controllability, observability, stabilizability, and detectability that are appropriate for continuous-time Markovian jump linear systems. These definitions play the same role for the JLQ problem as the deterministic properties do for the linear quadratic regulator (LQR) problem  相似文献   
10.
The design of feedback controllers to accurately and robustly regulate the properties of electrically stimulated muscle is considered. Reliable, precise control is necessary for the development of neuroprosthetic devices to improve gradation and repeatability of force. A digital closed-loop controller has been developed which regulates muscle force by modulating the pulsewidth of a constant-amplitude electrical simulation pulse train. This controller has been evaluated in slow- and fast-twitch muscles (cat soleus and plantaris) in acute experiments. In isometric tests, it was found to regulate muscle force with low sensitivity to modeling errors and disturbances while satisfying stability, repeatability, linearity, and step/ramp response criteria over a wide range of commands  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号