首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学工业   8篇
金属工艺   1篇
无线电   3篇
一般工业技术   13篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2009年   1篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1966年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
Covellite, CuS and chalcocite, Cu2S nanoparticles prepared in the explosive manner from elemental precursors were further ball-milled in order to observe additional changes caused by mechanical action. Three phases of chalcocite were interchanging during milling, monoclinic one being major at the equilibrium after 30 min. In the case of covellite synthesis, milling for 15 min brought about a significant diminishment in the content of digenite, Cu1.8S, impurity. Covellite powder exhibited finer character than chalcocite, as documented by crystallite size, grain size and specific surface area analysis. Finally, the effect of milling speed on the explosive character of the reaction and phase composition of chalcocite was investigated. The most drastic conditions favored the formation of the monoclinic phase with the lowest symmetry and the time and intensity of the explosion was found to depend on the milling speed. The whole process is mechanically driven.  相似文献   
2.
Thermal coefficients of the expansion and refractive index in YAG   总被引:2,自引:0,他引:2  
Wynne R  Daneu JL  Fan TY 《Applied optics》1999,38(15):3282-3284
The thermal expansion coefficient and dn/dT are measured by interferometry techniques in undoped YAG below 300 K. The thermal expansion coefficient at 125 K is measured to be 2.70 x 10(-6) K(-1) and dn/dT at 633 nm is 2.5 x 10(-6) K(-1), compared with 7 x 10(-6) K(-1) and 9 x 10(-6) K(-1) for these quantities at 300 K.  相似文献   
3.
Zinc oxide nanopowders were synthesized by the sol-gel method from an ethanol solution of zinc acetate dihydrate. Detailed structural and microstructural investigations were carried out using x-ray diffraction, Raman spectroscopy, thermogravimetric and differential thermal analyses, as well as high-resolution transmission electron microscopy (TEM) and field-emission scanning electron microscopy. The intermediate compound of the reaction was layered zinc hydroxide acetate that further transforms into hexagonally shaped ZnO crystalline nanoplates (d(m) = 4 nm), which aggregate into larger spherical particles. According to the TEM analysis the ZnO nanoparticles were self-assembled into larger particles with the same orientation, i.e. aligned lattice planes of the particles. A further solvothermal treatment resulted in hexagonal, prismatic ZnO mesocrystals.  相似文献   
4.
Mechanochemical synthesis of bismuth selenides (BiSe, Bi2Se3) was performed by high-energy milling of bismuth and selenium powders in a planetary ball mill. The particle size distribution and the specific surface area of Bi/Se and 2Bi/3Se powder mixtures were analysed at increasing milling time. The products were characterized by X-ray diffraction, differential scanning calorimetry and transmission electron microscopy. The presence of bismuth selenide phases was observed after only 1?min of milling and full conversion into hexagonal BiSe phase (nevskite) and rhombohedral Bi2Se3 phase (paraguanajuatite) was reached after 10?min of milling. The nanocrystalline nature of both mechanochemically synthesised bismuth selenides was confirmed and their optical band gap energies were obtained on the basis of the recorded absorption spectra in UV–Vis spectral region.  相似文献   
5.
Conventional mechanochemical synthesis of zinc selenide, ZnSe nanoparticles was performed in a planetary ball mill by high-energy milling of zinc (Zn) and selenium (Se) powders with the de-aggregating agents ZnCl2 and phthalic acid (aromatic dicarboxylic acid, C8H6O4). Physical–chemical and optical properties of the prepared ZnSe nanoparticles were studied and compared. The mechanochemically synthesized products were characterized by X-ray diffraction analysis (XRD) that confirmed the presence of cubic-Stilleite and hexagonal ZnSe phases after 18, 25, 30, 40, 45 and 50 min of milling with various amounts of the added de-aggregating agents. Size of crystallites calculated from XRD patterns was from 20 to 31 nm for cubic ZnSe prepared with ZnCl2. For ZnSe synthesized with phthalic acid the crystallite size ranged from 16 to 73 nm. Size, phase composition, morphology, and crystallinity of ZnSe nanoparticles were studied by transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Photoluminescence spectra (PL) at room temperature have shown a broad red emission bands, and the presence of de-aggregating agent has altered the intensity of the PL signal as well.  相似文献   
6.
By using a bio-mechanochemical approach combining mechanochemistry (ball milling) and green synthesis for the first time, silver nanoparticles (Ag NPs) with antibacterial activity were successfully synthesized. Concretely, eggshell membrane (ESM) or Origanum vulgare L. plant (ORE) and silver nitrate were used as environmentally friendly reducing agent and Ag precursor, respectively. The whole synthesis took 30?min in the former and 45?min in the latter case. The photon cross-correlation measurements have shown finer character of the product in the case of milling with Origanum. UV–Vis measurements have shown the formation of spherical NPs in both samples. TEM study has revealed that both samples are composites of nanosized silver nanoparticles homogenously dispersed within the organic matrices. It has shown that the size and size distribution of the silver nanoparticles is smaller and more uniform in the case of eggshell membrane matrix implying lower silver mobility within this matrix. The antibacterial activity was higher for the silver nanoparticles synthesized with co-milling with Origanum plant than in the case of milling with eggshell membrane.  相似文献   
7.
Microstructure Development in Low-Antimony Oxide-Doped Zinc Oxide Ceramics   总被引:1,自引:0,他引:1  
The grain growth of ZnO ceramics sintered with low additions of Sb2O3 (<500 ppm of Sb) was investigated. Additions of Sb<250 ppm resulted in a coarse-grained microstructure with large ZnO grains (55–70 μm), much larger than the grain size of ZnO ceramics without any Sb2O3 addition (45 μm). The addition of 500 ppm of Sb resulted in a fine-grained microstructure with an average ZnO grain size of about 12 μm. The results are explained by an inversion-boundary (IB) -induced grain-growth mechanism. The grain-growth exponent has a value of about 2 as long as the grains containing IBs grow at the expense of IB-free grains. It increases to about 4 after the IB-containing grains impinge on each other, and achieves values above 10 for additions of 500 ppm of Sb when IBs nucleate in nearly all the ZnO grains so that grains with IBs prevail in the microstructure at an early stage in the grain-growth process.  相似文献   
8.
Continuous-fiber-reinforced SiC/SiC-based matrix composite materials, to be used in the first-wall blanket of a fusion reactor, were prepared by the infiltration of SiC cloth with SiC-based suspensions of various chemical compositions. The compositions were tailored with respect to the calculated activation in a fast-neutron flux. Liquid-phase sintering was used for material densification, using different sintering aids, such as Al2O3, Y2O3, P2O5, AlN, etc. The microstructures of the differently prepared materials were studied with scanning and transmission electron microscopy and microanalysis. This paper was presented at the International Symposium on Manufacturing, Properties, and Applications of Nanocrystalline Materials sponsored by the ASM International Nanotechnology Task Force and TMS Powder Materials Committee on October 18–20, 2004 in Columbus, OH.  相似文献   
9.
The effects of adding small quantities of SnO2 to the basic ZnO–Bi2O3 varistor composition were studied in terms of phase reactions, microstructural development, and the formation of inversion boundaries. Scanning and transmission electron microscopy studies showed that the inversion boundaries, triggered by the addition of SnO2, cause anisotropic grain growth in the early stages of sintering. ZnO grains that include inversion boundaries grow exaggeratedly, at the expense of normal grains, until they dominate the microstructure. Higher additions of SnO2 lead to an increase in number of grains with inversion boundaries and to a more fine-grained microstructure. The increasing amount of secondary phases is also related to a higher level of SnO2 addition; however, the influence of these phases on ZnO grain growth is subordinate to the role of inversion boundaries.  相似文献   
10.
What is believed to be a new concept for the measurement of micrometer-sized particle trajectories in an inlet air stream is introduced. The technique uses a light source and a mask to generate a spatial pattern of light within a volume in space. Particles traverse the illumination volume and elastically scatter light to a photodetector where the signal is recorded in time. The detected scattering waveform is decoded to find the particle trajectory. A design is presented for the structured laser beam, and the accuracy of the technique in determining particle position is demonstrated. It is also demonstrated that the structured laser beam can be used to measure and then correct for the spatially dependent instrument-response function of an optical-scattering-based particle-sizing system for aerosols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号