首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
化学工业   4篇
金属工艺   1篇
能源动力   1篇
轻工业   1篇
无线电   2篇
一般工业技术   4篇
自动化技术   4篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2013年   1篇
  2009年   2篇
排序方式: 共有17条查询结果,搜索用时 10 毫秒
1.
2.
Nanoparticle adsorption to substrates pose a unique challenge to understand uptake mechanisms as it involves the organization of complex cytoskeletal components by cells to perform endocytosis/phagocytosis. In particular, it is not well‐understood from a cell mechanics perspective how the adhesion of particles on substrate will influence the ease of material clearance. By using a particle model, key contributing factors underlying cell adhesion on nonporous silica particle surfaces, migration and engulfment, are simulated and studied. Following a 24 h incubation period, monocyte‐derived macrophages and A549 epithelial cells are able to adhere and remove particles in their local vicinity through induction of adhesive pulling arise from cell traction forces and phagocytic/endocytic mechanisms, in a size‐dependent manner. It is observed that such particle‐decorated surfaces can be used to address the influence of surface topography on cell behavior. Substrates which presented 480 nm silica particles are able to induce greater development and maturation of focal adhesions, which play an important role in cellular mechanoregulation. Moreover, under a chemotactic influence, in the presence of 30% fetal bovine serum, macrophages are able to uptake the particles and be directed to translocate along a concentration gradient, indicating that local mechanical effects do not substantially impair normal physiological functions.  相似文献   
3.

Background

The lung represents the primary entry route for airborne particles into the human body. Most studies addressed possible adverse effects using single (nano)particles, but aerosolic nanoparticles (NPs) tend to aggregate and form structures of several hundreds nm in diameter, changing the physico-chemical properties and interaction with cells. Our aim was to investigate how aggregation might affect the biodistribution; cellular uptake and translocation over time of aerosolized NPs at the air-blood barrier interface using a multicellular lung system.

Results

Model gold nanoparticles (AuNPs) were engineered and well characterized to compare single NPs with aggregated NPs with hydrodynamic diameter of 32 and 106 nm, respectively. Exposures were performed by aerosolization of the particles onto the air-liquid interface of a three dimensional (3D) lung model. Particle deposition, cellular uptake and translocation kinetics of single and aggregated AuNPs were determined for various concentrations, (30, 60, 150 and 300 ng/cm2) and time points (4, 24 and 48 h) using transmission electron microscopy and inductively coupled plasma optical emission spectroscopy. No apparent harmful effect for single and aggregated AuNPs was observed by lactate dehydrogenase assay, nor pro-inflammation response by tumor necrosis factor α assessment. The cell layer integrity was also not impaired. The bio-distribution revealed that majority of the AuNPs, single or aggregated, were inside the cells, and only a minor fraction, less than 5%, was found on the basolateral side. No significant difference was observed in the translocation rate. However, aggregated AuNPs showed a significantly faster cellular uptake than single AuNPs at the first time point, i.e. 4 h.

Conclusions

Our studies revealed that aggregated AuNPs showed significantly faster cellular uptake than single AuNPs at the first time point, i.e. 4 h, but the uptake rate was similar at later time points. In addition, aggregation did not affect translocation rate across the lung barrier model since similar translocation rates were observed for single as well as aggregated AuNPs.
  相似文献   
4.
Control charts are widely used in industrial environments for the simultaneous or separate monitoring of the process mean and process variability. The Max-Mchart is a multivariate Shewhart-type simultaneous control chart that is used when monitoring subgroups. While this sampling design allows the computation of the generalized variance (GV) used to calculate the process variability, a GV chart cannot be plotted for individual observations. Hence, we cannot compute the single statistic in the Max-Mchart. This study aims to overcome the aforementioned issue. To this end, first, we develop a new Max-Mchart for individual observations by utilizing the statistic in the dispersion control chart. Second, instead of the standard normal distribution, we propose a new transformation using a half-normal distribution to calculate the statistic for the process mean and process variability. Thus, the proposed chart is called the Max-Half-Mchart, whose control limit is calculated using the bootstrap approach. An evaluation based on the average run length values shows the robustness of the Max-Half-Mchart for the simultaneous monitoring of the process mean and process variability. The single statistic in the Max-Half-Mchart is more consistent with the statistic in Hotelling's T2 and the dispersion chart than that of the Max-Mchart.  相似文献   
5.
Journal of Electronic Materials - Nanoparticulate (NP) films and organic photovoltaic devices have been fabricated from poly(3-hexylthiophene):phenyl C61 butyric acid methyl ester (P3HT:PC61BM) NP...  相似文献   
6.
Digital twins (DTs) offer the potential for improved understanding of current and future manufacturing processes. This can only be achieved by DTs consistently and accurately representing the real processes. However, the robustness and resilience of the DT itself remain an issue. Accordingly, this paper offers an approach to deal with uncertainty and disruptions, as the DT detects these effectively and self-adapts as needed to maintain representativeness. The paper proposes an intelligent agent-based architecture to improve the robustness (including accuracy of representativeness) and resilience (including timely update) of the DT. The approach is demonstrated on a case of cryogenic secondary manufacturing.  相似文献   
7.
8.
Size reduction is essential to utilize biomass in many applications. Production of fine particles from biomass chips is usually performed using milling machines that consume large amount of energy. Steam explosion (SE) is a promising method for reducing the size of biomass using less energy consumption because it utilizes thermal energy. In this study, we focused on the possibility of the SE method to produce fine particles with a size below 1 mm from wood chips. Sakura (Prunus spp., hardwood) and Japanese cedar (Cryptomeria japonica, softwood) chips with a size of 5–10 mm were used in this study. The effects of SE conditions – such as temperature and residence time – and of the biomass type on the biomass size reduction were investigated in detail. The energy consumption of SE was also calculated and compared with that of the conventional mill. We found that SE is an energy-efficient method for biomass milling.  相似文献   
9.
This paper reports the joining of SiC monoliths using a thin MAX phase tape filler, such as Ti3AlC2 and Ti3SiC2, and the subsequent phenomena leading to the elimination of the joining layer via solid-state diffusion of the MAX phase into the SiC base material, particularly with the decomposition of the Ti3AlC2 filler. The base SiC monolith, showing?≥?99% density, was fabricated by hot pressing SiC powder after adding 5?wt. % Al2O3-Y2O3 sintering additive. A butt-joint configuration was prepared and joined by hot pressing under a pressure of 3.5?MPa. The effects of the experimental parameters, including the type and thickness of the joining filler, temperature as well as the holding time, were examined carefully in terms of the microstructure, phase evolution and joining strength. The joining interface could be eliminated from the SiC base when the SiC monoliths were joined at 1900?°C using a thin Ti3AlC2 tape, showing a high joining strength ~300?MPa. Moreover, fracture during the mechanical test occurred mainly at the base material rather than the joining interface, indicating excellent joining properties. These findings highlight the elimination of the joining interlayer, which might be ideal for practical applications because the absence of a joining filler helped preserve the excellent SiC mechanical properties of the joint.  相似文献   
10.
Abstract

A mixture of fatty hydroxamic acids (FHA), synthesized from a commercial palm olein, was evaluated as an extractant for extraction of copper ion from aqueous media. The content of hydroxamic acid groups in the FHA, analyzed by elemental analysis, was 3.52 mmol/g. Copper extraction from aqueous media was studied by solvent extraction technique using octanol as an organic phase. The extraction of copper ion was through the formation of 1∶2 (Cu(II)∶FHA) complex, pH dependent and not affected by the presence of a large amount of Co(II), Ni(II), Cd(II) and Zn(II) ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号