首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
无线电   8篇
  2013年   1篇
  2012年   1篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  2001年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
A low-complexity ML channel estimator for OFDM   总被引:2,自引:0,他引:2  
Orthogonal frequency-division multiplexing with cyclic prefix enables low-cost frequency-domain mitigation of multipath distortion. However, to determine the equalizer coefficients, knowledge of the channel frequency response is required. While a straightforward approach is to measure the response to a known pilot symbol sequence, existing literature reports a significant performance gain when exploiting the frequency correlation properties of the channel. Expressing this correlation by the finite delay spread, we build a deterministic model parametrized by the channel impulse response and, based on this model, derive the maximum-likelihood channel estimator. In addition to being optimal (up to the modeling error), this estimator receives an elegant time-frequency interpretation. As a result, it has a significantly lower complexity than previously published methods.  相似文献   
2.
Wireless Mobile Communications rely on a host of techniques, all related to one goal, sending the most possible information accross a link or a network. In recent years, both spatial and multiuser diversity have proven to be key techniques to achieve this goal. These two diversity dimensions can be exploited by the use of multiple antennas and/or the use of multiple terminals sending at the same time/frequency/code, these terminals can be seen as a multiple antenna emitter. This transmission diversity can be achieved with cooperative space-time encoded transmissions. One of the practical problems with this sort of array of transmitters is that the emitters will be asynchronous to some extent, hence the need for systems that can deal with asynchronicity, both from a signal design point of view and from a signal processing point of view. Having tackled the signal design previously, we take a look at the signal processing aspect and present a channel and delay estimation algorithm for asynchronous cooperative diversity in Block-Flat-Fading channel. The signal design is based on a precoding frame-based scheme with packet-wise encoding. This precoding is based on the addition of a cyclic prefix, implemented as a training sequence. The signal processing takes advantage of the known symbols offered by this cyclic prefix/training sequence and we show that it enables best synchronization and channel estimation which reaches the Cramer-Rao Bound. The BER performances are the same as synchronous MRC case, with full diversity order.  相似文献   
3.
Wireless Robotics has become an important research topic in the last two decades. The need of controlling a robot to perform tasks remotely has significantly increased with the number of applications in fields like medicine and military, among many others. Taking advantage of current standards like Bluetooth and Wifi, Wireless Robotics calls for low power consumption components, robustness and high data rate through the wireless channel. This call can be fulfilled with a reliable signaling format, satisfying the needs of low power consumption and high spectral efficiency. Besides, continuous phase modulation (CPM) has gained increasing attention due to its favorable trade-off between power and bandwidth efficiency. Multi-h CPM recently appeared as a generalization of single-h schemes so as to further decrease the need for bandwidth expansion over the wireless channel. Despite the interesting characteristics of CPM, the decoding of the received signal is particularly difficult in a multi-path wireless environment with no diversity. To provide some level of diversity, several authors have proposed to combine CPM with space-time block coding. A new family of codes for CPM, based on $L^2$ -orthogonality was recently introduced in Hesse et al. (IEEE Trans Commun 59(11): 3158–3166, 2011). These full rate codes achieve full diversity and a low decoding complexity. In this paper, we detail a non trivial extension of these $L^2$ -orthogonal space-time codes using multi-h signaling schemes. These new codes still achieve full diversity but a better spectral compactness by utilizing the available communication bandwidth more efficiently. Also, the decoding complexity is greatly decreased by using only one correlation filter bank for the detection of all transmitted signals.  相似文献   
4.
Constrained least squares detector for OFDM/SDMA-based wireless networks   总被引:1,自引:0,他引:1  
The two major obstacles toward high-capacity indoor wireless networks are distortion due to the indoor channel and the limited bandwidth which necessitates a high spectral efficiency. A combined orthogonal frequency division multiplexing (OFDM)/spatial division multiple access (SDMA) approach can efficiently tackle both obstacles and paves the way for cheap, high-capacity wireless indoor networks. The channel distortion due to multipath propagation is efficiently mitigated with OFDM while the bandwidth efficiency can be increased with the use of SDMA. However, to keep the cost of an indoor wireless network comparable to its wired counterpart's cost, low-complexity SDMA processors with good performance are of special interest. In this paper, we propose a new multiuser SDMA detector which is designed for constant modulus signals. This constrained least squares (CLS) receiver, which deterministically exploits the constant modulus nature of the subcarrier modulation to achieve better separation, is compared in terms of performance and complexity with the zero forcing (ZF) and the minimum mean square error (MMSE) receiver. Additionally, since the CLS detector relies on reliable channel knowledge at the receiver, we propose a strategy for estimating the multiple input multiple output (MIMO) channels. Simulations for a Hiperlan II-based case-study show that the CLS detector significantly outperforms the ZF detector and comes close to the performance of the MMSE detector for QPSK. For higher order M-PSK, the CLS detector outperforms the MMSF detector. Furthermore, the estimation complexity for the CLS detector is substantially lower than that for the MMSE detector which additionally requires estimation of the noise power.  相似文献   
5.
To approach the potential multiple-input multiple-output (MIMO) capacity while optimizing the system bit-error rate (BER) performance, the joint transmit and receive minimum mean squared error (joint Tx/Rx MMSE) design has been proposed. It is the optimal linear scheme for spatial multiplexing MIMO systems, assuming a fixed number of spatial streams p as well as fixed modulation and coding across these spatial streams. However, the number of spatial streams has been arbitrarily chosen and fixed, which may lead to an inefficient power allocation strategy and a poor BER performance. In this paper, we relax the constraint of fixed number of streams p and optimize this value for the current channel realization, under the constraints of fixed average total transmit power P/sub T/ and fixed rate R, what we refer to as mode selection . Based on the observation of the existence of a dominant optimal number of streams value for the considered Rayleigh flat-fading MIMO channel model, we further propose an "average" mode selection that avoids the per-channel adaptation through using the latter dominant value for all channel realizations. Finally, we exhibit the significant BER improvement provided by our mode selection over the conventional joint Tx/Rx MMSE design. Such significant improvement is due to the better exploitation of the MIMO spatial diversity and the more efficient power allocation enabled by our mode selection.  相似文献   
6.
Orthogonal frequency-division multiplexing (OFDM), with the help of a cyclic prefix, enables low complexity frequency domain equalization, but suffers from a high crest factor. Single carrier with cyclic prefix (SC-CP) has the same advantage with similar performance, but with a lower crest factor and enhanced robustness to phase noise. The cyclic prefix is overhead, so we put more information in it by implementing this cyclic prefix as a training sequence (TS). This new training aided frequency domain equalized single carrier (TASC) scheme offers us additional known symbols and enables better synchronization and (potentially) channel estimation, with the same performance as SC-CP  相似文献   
7.
The physical layer(s) of wireless robotics take advantage of current standards, like Bluetooth, Wifi, etc., each of them addressing a specific segment of wireless robotics. Wireless robotics has a wide range of needs, comprising low power, robustness and high data rate when video is used as well as the opportunity to use a large number of transceivers. To cover these needs and take benefit from these opportunities, we propose a new physical layer, based on continuous phase modulation (CPM) and space-time coding. CPM, already used in some standards like GSM and Bluetooth, enables the development of low power devices, but presents a low spectral efficiency. Space-time coding on the other hand yields high spectral efficiency as well as enhanced robustness against the wireless channel. Moreover, space-time coding can take benefit of the large number of transceivers using cooperative communications. In this paper, after analysing the opportunities given by wireless robotics as well as its specific needs, we propose a new physical layer based on L 2-orthogonality for non-linear space-time codes. L 2-orthogonality of our codes is ensured by a bank of phase correction functions, maintaining phase continuity, but at the same time enabling low complexity decoding. We show that the code achieves full diversity and has full rate, for any number of transmit/receive antennas and any CPM parameter.  相似文献   
8.
The combination of space-time block coding (STBC) and direct-sequence code-division multiple access (DS-CDMA) has the potential to increase the performance of multiple users in a cellular network. However, if not carefully designed, the resulting transmission scheme suffers from increased multiuser interference (MUI), which dramatically deteriorates the performance. To tackle this MUI problem in the downlink, we combine two specific DS-CDMA and STBC techniques, namely single-carrier block transmission (SCBT) DS-CDMA and time-reversal STBC. The resulting transmission scheme allows for deterministic maximum-likelihood (ML) user separation through low-complexity code-matched filtering, as well as deterministic ML transmit stream separation through linear processing. Moreover, it can achieve maximum diversity gains of N/sub T/N/sub R/(L+1) for every user in the system, irrespective of the system load, where N/sub T/ is the number of transmit antennas, N/sub R/ the number of receive antennas, and L the order of the underlying multipath channels. In addition, it turns out that a low-complexity linear receiver based on frequency-domain equalization comes close to extracting the full diversity in reduced, as well as full load settings. In this perspective, we also develop two (recursive) least squares methods for direct equalizer design. Simulation results demonstrate the outstanding performance of the proposed transceiver compared to competing alternatives.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号