首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学工业   2篇
无线电   1篇
自动化技术   2篇
  2022年   3篇
  2018年   1篇
  2003年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.

Supervision of repair and diagnostic works aimed at improving the safety of maintenance crews is one of the key objectives of the distributed INRED system. Working in a real industrial environment, the INRED system includes, among others, the so-called INRED-Workflow, which provides an infrastructure for process automation. Participants of the service processes, managed by the INRED-Workflow, are controlled at each stage of the performed service procedures, both by the system and other process participants, such as quality managers and technologists. All data collected from the service processes is stored in the System Knowledge Repository (SKR) for further processing by using advanced algorithms, and the so-called Smart Procedures merge services supplied by other INRED system modules. The applicability of workflow management systems in conjunction with image recognition and machine learning methods has not yet been thoroughly explored. The presented paper shows the innovative usage of such systems in the supervision of the repair and diagnostic works.

  相似文献   
2.
Multimedia Tools and Applications - In this paper, we will present a study concerning the understanding of the needs of people using Internet in order to access to multilingual information. In...  相似文献   
3.
Opportunistic pathogen Candida albicans causes systemic infections named candidiasis. Due to the increasing number of multi-drug resistant clinical isolates of Candida sp., currently employed antifungals (e.g., azoles) are insufficient for combating fungal infection. One of the resistance mechanisms toward azoles is increased expression of plasma membrane (PM) transporters (e.g., Cdr1p), and such an effect was observed in C. albicans clinical isolates. At the same time, it has been proven that a decrease in PMs sphingolipids (SLs) content correlates with altered sensitivity to azoles and diminished Cdr1p levels. This indicates an important role for SL in maintaining the properties of PM and gaining resistance to antifungal agents. Here, we prove using a novel spot variation fluorescence correlation spectroscopy (svFCS) technique that CaCdr1p localizes in detergent resistant microdomains (DRMs). Immunoblot analysis confirmed the localization of CaCdr1p in DRMs fraction in both the C. albicans WT and erg11Δ/Δ strains after 14 and 24 h of culture. We also show that the C. albicans erg11Δ/Δ strain is more sensitive to the inhibitor of SLs synthesis; aureobasidin A (AbA). AbA treatment leads to a diminished amount of SLs in C. albicans WT and erg11Δ/Δ PM, while, for C. albicans erg11Δ/Δ, the general levels of mannose-inositol-P-ceramide and inositol-P-ceramide are significantly lower than for the C. albicans WT strain. Simultaneously, the level of ergosterol in the C. albicans WT strain after adding of AbA remains unchanged, compared to the control conditions. Analysis of PM permeabilization revealed that treatment with AbA correlates with the disruption of PM integrity in C. albicans erg11Δ/Δ but not in the C. albicans WT strain. Additionally, in the C. albicans WT strain, we observed lower activity of H+-ATPase, correlated with the delocalization of both CaCdr1p and CaPma1p.  相似文献   
4.
The opportunistic pathogen Candida albicans is responsible for life-threating infections in immunocompromised individuals. Azoles and polyenes are two of the most commonly used antifungals and target the ergosterol biosynthesis pathway or ergosterol itself. A limited number of clinically employed antifungals correspond to the development of resistance mechanisms. One resistance mechanism observed in clinical isolates of azole-resistant C. albicans is the introduction of point mutations in the ERG11 gene, which encodes a key enzyme (lanosterol 14-α-demethylase) on the ergosterol biosynthesis pathway. Here, we demonstrate that a point mutation K143R in ERG11 (C. albicans ERG11K143R/K143R) contributes not only to azole resistance, but causes increased gene expression. Overexpression of ERG11 results in increased ergosterol content and a significant reduction in plasma membrane fluidity. Simultaneously, the same point mutation caused cell wall remodeling. This could be facilitated by the unmasking of chitin and β-glucan on the fungal cell surface, which can lead to recognition of the highly immunogenic β-glucan, triggering a stronger immunological reaction. For the first time, we report that a frequently occurring azole-resistance strategy makes C. albicans less susceptible to azole treatment while, at the same time, affects its cell wall architecture, potentially leading to exposure of the pathogen to a more effective host immune response.  相似文献   
5.
The traffic to be carried by today's European backbone networks increases very rapidly. An important portion of this traffic consists of data traffic (mainly IP-related). In the future data traffic is expected to become the abundantly dominant traffic type, while voice traffic will only account for a very small portion of the total traffic volume. In this paper, some network topologies for such a pan-European fiber-optic backbone network are presented (more details can be found in [1]). These topologies are compared in terms of the efficiency of the network design both from a cost and capacity point of view and in terms of the availability of the connections routed over this network. In order to be able to assess the network topologies under realistic circumstances, the expected traffic demand is forecasted. This enables to make the comparison for the current traffic volume as well as for the traffic patterns of the future. As not all types of (data) traffic require the same degree of survivability and in order to leverage the total capacity cost of the network design, a distinction is made between different recovery options in the optical layer for the different traffic types considered.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号