首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学工业   1篇
无线电   16篇
  2009年   2篇
  2008年   2篇
  2005年   1篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1984年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
We show that the optimum length-ν guard sequence for block transmission over a linear Gaussian-noise dispersive channel with memory ν is a linear combination of the N information symbols of the block. A closed-form expression for the optimum guard sequence is derived subject to a total average energy constraint on the information and guard symbols. The achievable channel block throughput with the optimum guard sequence is compared with that achievable with two common guard sequence types, namely zero stuffing and cyclic prefix  相似文献   
2.
Two subspaces of a vector space are here called "nonintersecting" if they meet only in the zero vector. Motivated by the design of noncoherent multiple-antenna communications systems, we consider the following question. How many pairwise nonintersecting M/sub t/-dimensional subspaces of an m-dimensional vector space V over a field F can be found, if the generator matrices for the subspaces may contain only symbols from a given finite alphabet A/spl sube/F? The most important case is when F is the field of complex numbers C; then M/sub t/ is the number of antennas. If A=F=GF(q) it is shown that the number of nonintersecting subspaces is at most (q/sup m/-1)/(q/sup Mt/-1), and that this bound can be attained if and only if m is divisible by M/sub t/. Furthermore, these subspaces remain nonintersecting when "lifted" to the complex field. It follows that the finite field case is essentially completely solved. In the case when F=C only the case M/sub t/=2 is considered. It is shown that if A is a PSK-configuration, consisting of the 2/sup r/ complex roots of unity, the number of nonintersecting planes is at least 2/sup r(m-2)/ and at most 2/sup r(m-1)-1/ (the lower bound may in fact be the best that can be achieved).  相似文献   
3.
We consider the information exchange problem where each in a set of terminals transmits information to all other terminals in the set, over an undirected network. We show that the design of only a single network code for multicasting is sufficient to achieve an arbitrary point in the achievable rate region. We also provide an alternative proof for the set of achievable rate tuples.  相似文献   
4.
This paper describes an adaptive space-time receiver with joint channel-data estimation (JCDE) to combat time-varying (TV) multipath channels in the presence of undesired cochannel interference (CCI). The receiver uses a colored Gaussian metric for sequence detection in order to suppress the CCI. The proposed scheme also uses the knowledge of the transmit filter for improved channel estimation to enhance performance. The algorithm is derived as a quasi-Newton scheme on a chosen cost criterion and is also locally convergent. The performance of this class of interference cancellers is examined through the pairwise error probability (PEP). Through these expressions we gain insight into the properties of the canceller. The effect of channel dynamics and identification mismatch on the PEP is also examined. To reduce implementational complexity, a hybrid delayed-decision feedback and JCDE scheme is also proposed. The performance is illustrated using numerical results in realistic transmission environments  相似文献   
5.
In this paper, we study the multiple-access channel where users employ space-time block codes (STBC). The problem is formulated in the context of an intersymbol interference (ISI) multiple-access channel which occurs for transmission over frequency-selective channels. The algebraic structure of the STBC is utilized to design joint interference suppression, equalization, and decoding schemes. Each of the K users transmits using M/sub t/=2 transmit antennas and a time-reversed STBC suitable for frequency-selective channels. We first show that a diversity order of 2M/sub r/(/spl nu/+1) is achievable at full transmission rate for each user, when we have M/sub r/ receive antennas, channel memory of /spl nu/, and an optimal multiuser maximum-likelihood (ML) decoder is used. Due to the decoding complexity of the ML detector we study the algebraic structure of linear multiuser detectors which utilize the properties of the STBC. We do this both in the transform (D-domain) formulation and when we impose finite block-length constraints (matrix formulation). The receiver is designed to utilize the algebraic structure of the codes in order to preserve the block quaternionic structure of the equivalent channel for each user. We also explore some algebraic properties of D-domain quaternionic matrices and of quaternionic circulant block matrices that arise in this study.  相似文献   
6.
Intercarrier interference in MIMO OFDM   总被引:11,自引:0,他引:11  
In this paper, we examine multicarrier transmission over time-varying channels. We first develop a model for such a transmission scheme and focus particularly on multiple-input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM). Using this method, we analyze the impact of time variation within a transmission block (time variation could arise both from Doppler spread of the channel and from synchronization errors). To mitigate the effects of such time variations, we propose a time-domain approach. We design ICI-mitigating block linear filters, and we examine how they are modified in the context of space-time block-coded transmissions. Our approach reduces to the familiar single-tap frequency-domain equalizer when the channel is block time invariant. Channel estimation in rapidly time-varying scenarios becomes critical, and we propose a scheme for estimating channel parameters varying within a transmission block. Along with the channel estimation scheme, we also examine the issue of pilot tone placement and show that in time-varying channels, it may be better to group pilot tones together into clumps that are equispaced onto the FFT grid; this placement technique is in contrast to the common wisdom for time-invariant channels. Finally, we provide numerical results illustrating the performance of these schemes, both for uncoded and space-time block-coded systems.  相似文献   
7.
We consider the problem of transmitting a Gaussian source on a slowly fading Gaussian channel, subject to the mean-squared error distortion measure. The channel state information is known only at the receiver but not at the transmitter. The source is assumed to be encoded in a successive refinement (SR) manner, and then transmitted over the channel using the broadcast strategy. In order to minimize the expected distortion at the receiver, optimal power allocation is essential. We propose an efficient algorithm to compute the optimal solution in linear time , when the total number of possible discrete fading states. Moreover, we provide a derivation of the optimal power allocation when the fading state is a continuum, using the classical variational method. The proposed algorithm as well as the continuous solution is based on an alternative representation of the capacity region of the Gaussian broadcast channel.  相似文献   
8.
9.
We have examined the propagation behaviour of longitudinal ultrasonic wave along the X-axis near the ferroelectric phase transition temperature of KDP. We find the propagation behaviour is similar in nature to that along the Z-axis (polarization axis).  相似文献   
10.
On achievable performance of spatial diversity fading channels   总被引:3,自引:0,他引:3  
Channel time-variation and frequency selectivity [causing intersymbol interference (ISI)] are two major impairments in transmission for a wireless communication environment. Spatial diversity on the transmitter or the receiver side has been traditionally used to combat multipath fading. Previous results indicate significant gains in using multiple transmitter and receiver antenna diversity. By deriving the mutual information and cutoff rate we characterize the gains on these channels. We show that gains linear in the number of antennas can be achieved either when the signal-to-noise ratio (SNR) becomes very large or when the number of antennas becomes large. We show that some of these gains can be achieved by lower complexity linear receiver structures. By evaluating the cutoff rate for phase-shift keying (PSK) constellations we further quantify the gains of using spatial diversity at both the transmitter and the receiver. Next, we examine the expected mutual information for slowly fading ISI channels where the channel is assumed to be block time-invariant. We then examine the impact of fast channel time variation (time variation within a transmission block) on multicarrier transmission schemes. We derive the average mutual information for orthogonal frequency-division multiplexing (OFDM) in time-varying ISI environments. Using this we examine the impact of transmitter and receiver diversity on OFDM transmission over time-varying ISI channels. We also study the effect of time variation on OFDM packet-size design  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号