首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
无线电   2篇
自动化技术   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The Journal of Supercomputing - The holistic analysis and understanding of the latent (that is, not directly observable) variables and patterns buried in large datasets is crucial for data-driven...  相似文献   
2.

NP-hard problems such as the maximum clique or minimum vertex cover problems, two of Karp’s 21 NP-hard problems, have several applications in computational chemistry, biochemistry and computer network security. Adiabatic quantum annealers can search for the optimum value of such NP-hard optimization problems, given the problem can be embedded on their hardware. However, this is often not possible due to certain limitations of the hardware connectivity structure of the annealer. This paper studies a general framework for a decomposition algorithm for NP-hard graph problems aiming to identify an optimal set of vertices. Our generic algorithm allows us to recursively divide an instance until the generated subproblems can be embedded on the quantum annealer hardware and subsequently solved. The framework is applied to the maximum clique and minimum vertex cover problems, and we propose several pruning and reduction techniques to speed up the recursive decomposition. The performance of both algorithms is assessed in a detailed simulation study.

  相似文献   
3.
 If G is an n vertex maximal planar graph and δ≤1 3, then the vertex set of G can be partitioned into three sets A, B, C such that neither A nor B contains more than (1−δ)n vertices, no edge from G connects a vertex in A to a vertex in B, and C is a cycle in G containing no more than (√2δ+√2−2δ)√n+O(1) vertices. Specifically, when δ=1 3, the separator C is of size (√2/3+√4/3)√n+O(1), which is roughly 1.97√n. The constant 1.97 is an improvement over the best known so far result of Miller 2√2≈2.82. If non-negative weights adding to at most 1 are associated with the vertices of G, then the vertex set of G can be partitioned into three sets A, B, C such that neither A nor B has weight exceeding 1−δ, no edge from G connects a vertex in A to a vertex in B, and C is a simple cycle with no more than 2√n+O(1) vertices. Received: 8 September 1993/11 December 1995  相似文献   
4.
We prove separator theorems in which the size of the separator is minimized with respect to non-negative vertex costs. We show that for any planar graph G there exists a vertex separator of total sum of vertex costs at most and that this bound is optimal to within a constant factor. Moreover, such a separator can be found in linear time. This theorem implies a variety of other separation results. We describe applications of our separator theorems to graph embedding problems, to graph pebbling, and to multicommodity flow problems. Received June 1997; revised February 1999.  相似文献   
5.

This paper assesses the performance of the D-Wave 2X (DW) quantum annealer for finding a maximum clique in a graph, one of the most fundamental and important NP-hard problems. Because the size of the largest graphs DW can directly solve is quite small (usually around 45 vertices), we also consider decomposition algorithms intended for larger graphs and analyze their performance. For smaller graphs that fit DW, we provide formulations of the maximum clique problem as a quadratic unconstrained binary optimization (QUBO) problem, which is one of the two input types (together with the Ising model) acceptable by the machine, and compare several quantum implementations to current classical algorithms such as simulated annealing, Gurobi, and third-party clique finding heuristics. We further estimate the contributions of the quantum phase of the quantum annealer and the classical post-processing phase typically used to enhance each solution returned by DW. We demonstrate that on random graphs that fit DW, no quantum speedup can be observed compared with the classical algorithms. On the other hand, for instances specifically designed to fit well the DW qubit interconnection network, we observe substantial speed-ups in computing time over classical approaches.

  相似文献   
6.
A separator theorem for a class of graphs asserts that every graph in the class can be divided approximately in half by removing a set of vertices of specified size. Nontrivial separator theorems hold for several classes of graphs, including graphs of bounded genus and chordal graphs. We show that any separator theorem implies various weighted separator theorems. In particular, we show that if the vertices of the graph have real-valued weights, which may be positive or negative, then the graph can be divided exactly in half according to weight. If k unrelated sets of weights are given, the graph can be divided simultaneously by all k sets of weights. These results considerably strengthen earlier results of Gilbert, Lipton, and Tarjan: (1) for k=1 with the weights restricted to being nonnegative, and (2) for k>1 , nonnegative weights, and simultaneous division within a factor of (1+ε ) of exactly in half. Received November 21, 1995; revised October 30, 1997.  相似文献   
7.
We describe algorithms for finding shortest paths and distances in outerplanar and planar digraphs that exploit the particular topology of the input graph. An important feature of our algorithms is that they can work in a dynamic environment, where the cost of any edge can be changed or the edge can be deleted. In the case of outerplanar digraphs, our data structures can be updated after any such change in only logarithmic time. A distance query is also answered in logarithmic time. In the case of planar digraphs, we give an interesting tradeoff between preprocessing, query, and update times depending on the value of a certain topological parameter of the graph. Our results can be extended to n -vertex digraphs of genus O(n 1-ε ) for any ε>0 . Received September 24, 1996; revised May 13, 1998, and January 20, 1999.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号