首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学工业   7篇
无线电   4篇
一般工业技术   3篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2015年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有14条查询结果,搜索用时 9 毫秒
1.
For lead-germanate glass fibers, reducing the content of hydroxyl (OH) groups and the formation of metallic Pb species is essential to pave the way for their applications as low-loss mid-IR fiber optics since OH and metallic Pb species cause intense absorption and scattering loss, respectively, in the mid-IR spectral range. The first part of this study reported the optimization of the glass melting procedure to obtain low amount of OH while preventing formation of metallic Pb species in lead-germanate glass. Here, the second part of this study reports the investigation of the process conditions to fabricate low-loss lead-germanate glass fiber through further understanding of the co-effects of glass melting and heat treatment atmospheres on the formation of nano- and micron-scale metallic Pb species in both the as-produced and heat treated lead-germanate glasses. Finally, using this advance in knowledge, we successfully fabricated low-loss lead-germanate glass fibers with no presence of reduced metallic Pb particles by optimizing dehydration agent, glass melting, preform extrusion and fiber drawing conditions. The optimized fabrication conditions reduced the unstructured fiber loss by almost one order to <0.3 dB/m at 1.55 μm.  相似文献   
2.
Atomically thin transition metal dichalcogenides are highly promising for integrated optoelectronic and photonic systems due to their exciton-driven linear and nonlinear interactions with light. Integrating them into optical fibers yields novel opportunities in optical communication, remote sensing, and all-fiber optoelectronics. However, the scalable and reproducible deposition of high-quality monolayers on optical fibers is a challenge. Here, the chemical vapor deposition of monolayer MoS2 and WS2 crystals on the core of microstructured exposed-core optical fibers and their interaction with the fibers’ guided modes are reported. Two distinct application possibilities of 2D-functionalized waveguides to exemplify their potential are demonstrated. First, the excitonic 2D material photoluminescence is simultaneously excited and collected with the fiber modes, opening a novel route to remote sensing. Then it is shown that third-harmonic generation is modified by the highly localized nonlinear polarization of the monolayers, yielding a new avenue to tailor nonlinear optical processes in fibers. It is anticipated that the results may lead to significant advances in optical-fiber-based technologies.  相似文献   
3.
4.
A method for the functionalization of surfaces within soft glass microstructured optical fibers has been developed, using self assembled monolayers (SAMs) of silane coupling agents. We demonstrate the use of measurements of the fiber capillary fill rate, as a positive test for a functionalized internal surface. A simple theoretical model is used for comparison with measured fill rates. During this work, adsorption kinetics for SAMs of octadecyltrichlororsilane onto lead silicate glass has been investigated. This work is a critically important first step for a plethora of applications in biophotonics, chemical fiber sensing as well offering promise for protecting fiber glass from degradation.  相似文献   
5.
In this review, we examine recent developments in the field of chemical and biological sensing utilizing suspended-core, exposed-core, and hollow-core microstructured optical fibers. Depending on the intended application, a host of sensing modalities have been utilized including labelled fluorescence techniques, and label-free methods such as surface plasmon resonance, fiber Bragg gratings, and Raman scattering. The use of various functionalization techniques adds specificity to both chemical ions and biological molecules. The results shown here highlight some of the important benefits that arise with the use of microstructured optical fibers compared to traditional techniques, including small sample volumes, high sensitivity, and multiplexing.  相似文献   
6.
7.
Silica glasses doped with rare-earth ions are potential materials for optical fiber radiation detection and dosimetry applications. High sensitivity to radiation requires fibers with large cores that can be reliably fabricated using glass made in a novel process from the reactive powder sintering of silica. The luminescence and dosimetric properties of a range of rare earth-doped silica materials produced using this novel technique are reported here. Radioluminescence and optically stimulated luminescence (OSL) are the fundamental mechanisms enabling radiation detection in optical fibers. It was found that thermoluminescence, radioluminescence, and OSL are observed if the glass contains luminescent transitions in the detection wavelength range. Cerium- and thulium-doped silica glasses were found to be promising candidates for optical fiber dosimetry. Samples showed intense luminescence signals in response to both photo-stimulation and irradiation from alpha and beta sources. OSL results for cerium are three times larger than results for irradiated fluoride phosphate glasses previously tested for dosimetry use. Spectroscopic measurements indicate emission in the 300-500 nm region, suitable for detection with photomultiplier tubes.  相似文献   
8.
The development of optical fibers with suspended cores has enabled the demonstration of a range of powerful new techniques for chemical and biological sensing. Here the fabrication, design and application of this new class of fibers are reviewed. The performance and potential of sensors based on these fibers is evaluated, including dip sensors for sensing small sample volumes, exposed-core fibers for real-time and distributed measurements, and surface functionalized fibers for the specific detection of chemicals and biomolecules.  相似文献   
9.
This paper reports on the recent progress in the design and fabrication of high-nonlinearity lead-silicate holey fibers (HFs). First, the fabrication of a fiber designed to offer close to the maximum possible nonlinearity per unit length in this glass type is described. A value of /spl gamma/=1860 W/sup -1//spl middot/km/sup -1/ at a wavelength of 1.55 /spl mu/m is achieved, which is believed to be a record for any fiber at this wavelength. Second, the design and fabrication of a fiber with a slightly reduced nonlinearity but with dispersion-shifted characteristics tailored to enhance broadband supercontinuum (SC) generation when pumped at a wavelength of 1.06 /spl mu/m-a wavelength readily generated using Yb-doped fiber lasers-are described. SC generation spanning more than 1000 nm is observed for modest pulse energies of /spl sim/ 100 pJ using a short length of this fiber. Finally, the results of numerical simulations of the SC process in the proposed fibers are presented, which are in good agreement with the experimental observations and highlight the importance of accurate control of the zero-dispersion wavelength (ZDW) when optimizing such fibers for SC performance.  相似文献   
10.
The fabrication of small core high-NA soft glass microstructured optical fibres with propagation loss as low as 0.6 dB/m at 1100 nm is reported. Advances in soft glass preform extrusion and fibre fabrication have allowed the first demonstration that extrusion does not significantly contribute to the fibre loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号