首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
无线电   3篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
A variable gain amplifier (VGA) is designed for a GSM subsampling receiver. The VGA is implemented in a 0.35-/spl mu/m CMOS process and approximately occupies 0.64 mm/sup 2/. It operates at an IF frequency of 246 MHz. The VGA provides a 60-dB digitally controlled gain range in 2-dB steps. The overall gain accuracy is less than 0.3 dB. The current is 9 mA at 3 V supply. The noise figure at maximum gain is 8.7 dB. The IIP3 is -4 dBm at minimum gain, while the OIP3 is -1 dBm at maximum gain. The group delay is 1.5 ns across 5-MHz bandwidth.  相似文献   
2.
Calibration of phase and gain mismatches in Weaver image-reject receiver   总被引:1,自引:0,他引:1  
A modified image-reject Weaver architecture is presented. The design automatically calibrates for phase and gain mismatches that limit the performance of image-reject receivers. On-line or off-line calibrations are possible without using any calibrating tone. An experimental CMOS prototype RF front-end operating at 1.8 GHz achieves an image rejection ratio of 59 dB using on-line calibration. The design was fabricated in a 0.35-/spl mu/m CMOS process and dissipates 160 mW from a 3-V supply during on-line calibration, and 95 mW during normal receiving. The die area is 4 mm/sup 2/.  相似文献   
3.
A linear Doherty amplifier is presented. The design reduces AM-PM distortion by optimizing the device-size ratio of the carrier and peak amplifiers to cancel each other's phase variation. Consequently, this design achieves both good linearity and high backed-off efficiency associated with the Doherty technique, making it suitable for systems with large peak-to-average power ratio (WLAN, WiMAX, etc.). The fully integrated design has on-chip quadrature hybrid coupler, impedance transformer, and output matching networks. The experimental 90-nm CMOS prototype operating at 3.65 GHz achieves 12.5% power-added efficiency (PAE) at 6 dB back-off, while exceeding IEEE 802.11a -25 dB error vector magnitude (EVM) linearity requirement (using 1.55-V supply). A 28.9 dBm maximum Psat is achieved with 39% PAE (using 1.85-V supply). The active die area is 1.2 mm/sup 2/.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号