首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学工业   1篇
无线电   1篇
一般工业技术   8篇
冶金工业   2篇
自动化技术   4篇
  2014年   1篇
  2011年   1篇
  2010年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有16条查询结果,搜索用时 46 毫秒
1.
Older occupants in motor-vehicle crashes are more likely to experience injury than younger occupants. One possible reason for this is that increasing age is associated with increased prevalence of osteoporosis, which decreases bone strength.Crash-injury data were used with Bayes’ Theorem to estimate the conditional probability of AIS 3+ skeletal injury given that an occupant is osteoporotic for the injury to the head, spine, thorax, lower extremities, and upper extremities. This requires the conditional probabilities of osteoporosis given AIS 3+ injury for each of the body regions, which were determined from analysis of the Crash Injury Research and Engineering Network database. It also requires information on probability of osteoporosis in the crash-involved population and the probabilities of AIS 3+ skeletal injury to different body regions in crashes. The latter probabilities were obtained from the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) database. The former was obtained by modeling the probability of osteoporosis in the US populations using data from the 2006 National Health Examination Nutrition Survey and applying this model to the estimate of the crash-involved population in NASS-CDS. To attempt to account for the effects of age on injury outcome that are independent of osteoporosis, only data from occupants who were 60 years of age or older were used in all analyses.Results indicate that the only body region that experiences a statistically significant change in fracture injury risk with osteoporosis is the spine, for which osteoporosis increases the risk of AIS 3+ fracture by 3.28 times, or from 0.41% to 1.34% (p < 0.0001). This finding suggests that the increase in AIS 3+ injury risk with age for non-spine injuries is likely influenced by factors other than osteoporosis.  相似文献   
2.
The purpose of this study was to estimate the size of the influence of ambient light level on fatal pedestrian and vehicle crashes in three scenarios. The scenarios were: fatal pedestrian crashes at intersections, fatal pedestrian crashes on dark rural roads, and fatal single-vehicle run-off-road crashes on dark, curved roads. Each scenario's sensitivity to light level was evaluated by comparing the number of fatal crashes across changes to and from daylight saving time, within daily time periods in which an abrupt change in light level occurs relative to official clock time. The analyses included 11 years of fatal crashes in the United States, between 1987 and 1997. Scenarios involving pedestrians were most sensitive to light level, in some cases showing up to seven times more risk at night over daytime. In contrast, single-vehicle run-off-road crashes showed little difference between light and dark time periods, suggesting factors other than light level play the dominant role in these crashes. These results are discussed in the context of the possible safety improvements offered by new developments in adaptive vehicle headlighting.  相似文献   
3.
SRAMs (static random-access memory) with a 64 K×4 and 256 K×1 structure and with 8-ns access time have been developed on a 1.0-μm CMOS process. Circuits are designed with source-coupling techniques to achieve high speed with small signal swings, using only CMOS devices. A metal option permits selection of the 64 K×4 or 256 K×1 configuration. The same core architecture has also been used to generate ×8 and ×9 designs. An output-enable (OE) version achieves 3-ns response time. As system speeds have recently increased toward 100-MHz operation, the need for address transition detection (ATD) has diminished as a means for improving the SRAM speed/power ratio. This trend in SRAM design stems mainly from the fact that AC current becomes the most significant fraction of the total current. Accordingly, the design described here employs a purely static path through the entire SRAM, with no requirement of ATD at any point. The resulting DC current is countered with a combined strategy of array subdivision, small-signal techniques, and active preamplification at key points in the data path  相似文献   
4.
5.
The influence of light level was determined for three pedestrian crash scenarios associated with three adaptive headlighting solutions-curve lighting, motorway lighting, and cornering light. These results were coupled to corresponding prevalence data for each scenario to derive measures of annual lifesaving potential. For each scenario, the risk associated with light level was determined using daylight saving time (DST) transitions to produce a dark/light interval risk ratio; prevalence was determined using the corresponding annual crash rate in darkness for each scenario. For curve lighting, pedestrian crashes on curved roadways were examined; for motorway lighting, crashes associated with high speed roadways were examined; and for cornering light, crashes involving turning vehicles at intersections were examined. In the curve analysis, lower dark/light crash ratios were observed for curved sections of roadway compared to straight roads. In the motorway analysis, posted speed limit was the dominant predictor of this ratio for the fatal crash dataset; road function class was the dominant predictor of the ratio for the fatal/nonfatal dataset. Finally, in the intersection crash analysis, the dark/light ratio for turning vehicles was lower than for nonturning vehicles; and the ratio at intersections was lower than at non-intersections. Relative safety need was determined by combining the dark/light ratio with prevalence data to produce an idealized measure of lifesaving potential. While all three scenarios suggested a potential for safety improvement, scenarios related to high speed roadway environments showed the greatest potential.  相似文献   
6.

Background

The effects of age, body mass index (BMI) and gender on motor vehicle crash (MVC) injuries are not well understood and current prevention efforts do not effectively address variability in occupant characteristics.

Objectives

(1) Characterize the effects of age, BMI and gender on serious-to-fatal MVC injury. (2) Identify the crash modes and body regions where the effects of occupant characteristics on the numbers of occupants with injury is largest, and thereby aid in prioritizing the need for human surrogates that represent different types of occupant characteristics and adaptive restraint systems that consider these characteristics.

Methods

Multivariate logistic regression was used to model the effects of occupant characteristics (age, BMI, gender), vehicle and crash characteristics on serious-to-fatal injuries (AIS 3+) by body region and crash mode using the 2000–2010 National Automotive Sampling System (NASS-CDS) dataset. Logistic regression models were applied to weighted crash data to estimate the change in the number of annual injured occupants with AIS 3+ injury that would occur if occupant characteristics were limited to their 5th percentiles (age ≤ 17 years old, BMI ≤ 19 kg/m2) or male gender.

Results

Limiting age was associated with a decrease in the total number of occupants with head [8396, 95% CI 6871–9070] and thorax injuries [17,961, 95% CI 15,960–18,859] across all crash modes, decreased occupants with spine [3843, 95% CI 3065–4242] and upper extremity [3578, 95% CI 1402–4439] injuries in frontal and rollover crashes and decreased abdominal [1368, 95% CI 1062–1417] and lower extremity [4584, 95% CI 4012–4995] injuries in frontal impacts. The age effect was modulated by gender with older females more likely to have thorax and upper extremity injuries than older males. Limiting BMI was associated with 2069 [95% CI 1107–2775] fewer thorax injuries in nearside crashes, and 5304 [95% CI 4279–5688] fewer lower extremity injuries in frontal crashes. Setting gender to male resulted in fewer occupants with head injuries in farside crashes [1999, 95% CI 844–2685] and fewer thorax [5618, 95% CI 4212–6272], upper [3804, 95% CI 1781–4803] and lower extremity [2791, 95% CI 2216–3256] injuries in frontal crashes. Results indicate that age provides the greater relative contribution to injury when compared to gender and BMI, especially for thorax and head injuries.

Conclusions

Restraint systems that account for the differential injury risks associated with age, BMI and gender could have a meaningful effect on injury in motor-vehicle crashes. Computational models of humans that represent older, high BMI, and female occupants are needed for use in simulations of particular types of crashes to develop these restraint systems.  相似文献   
7.
The influence of lateral visibility from the vehicle cabin on safety was evaluated by examining the differences in lane-change crashes of four-door and two-door body styles of the same vehicle models. These two vehicle styles were used because B-pillars (the pillars between the front and rear seats) on four-door models are farther forward, and thus nearer the fore-aft position of the driver. (Furthermore, the B-pillars on two-door models can be narrower, and some two-door models have no B-pillars at all.) To control for driver differences between these two body styles, going-straight-ahead crashes were used for comparison. The analysis used 2000-2003 North Carolina crash data, and considered the crash experience of four-door and two-door body styles for the same 10 vehicles for model years 1995 and newer. The main finding is that four-door body styles are more likely to be involved in lane-change crashes than are two-door body styles of the same vehicle models. This finding suggests that lateral visibility out of the vehicle cabin affects safety.  相似文献   
8.
A multivariate logistic regression model, based upon National Automotive Sampling System Crashworthiness Data System (NASS-CDS) data for calendar years 1999–2008, was developed to predict the probability that a crash-involved vehicle will contain one or more occupants with serious or incapacitating injuries. These vehicles were defined as containing at least one occupant coded with an Injury Severity Score (ISS) of greater than or equal to 15, in planar, non-rollover crash events involving Model Year 2000 and newer cars, light trucks, and vans. The target injury outcome measure was developed by the Centers for Disease Control and Prevention (CDC)-led National Expert Panel on Field Triage in their recent revision of the Field Triage Decision Scheme (American College of Surgeons, 2006). The parameters to be used for crash injury prediction were subsequently specified by the National Expert Panel. Model input parameters included: crash direction (front, left, right, and rear), change in velocity (delta-V), multiple vs. single impacts, belt use, presence of at least one older occupant (≥55 years old), presence of at least one female in the vehicle, and vehicle type (car, pickup truck, van, and sport utility). The model was developed using predictor variables that may be readily available, post-crash, from OnStar®-like telematics systems. Model sensitivity and specificity were 40% and 98%, respectively, using a probability cutpoint of 0.20. The area under the receiver operator characteristic (ROC) curve for the final model was 0.84. Delta-V (mph), seat belt use and crash direction were the most important predictors of serious injury. Due to the complexity of factors associated with rollover-related injuries, a separate screening algorithm is needed to model injuries associated with this crash mode.  相似文献   
9.
Several cDNAs isolated from brains of diapausing pupae of the flesh fly, Sarcophaga crassipalpis, show expression patterns unique to diapause. To isolate such cDNAs a diapause pupal brain cDNA library was screened by using an elimination hybridization technique, and cDNAs that did not hybridize with cDNA probes constructed from the RNA of nondiapausing pupae were selected for further screening. The 95 clones that did not hybridize in the initial library screen were selected for further characterization. These clones were then screened against diapause and nondiapause pupal poly(A)+ Northern blots. The secondary screen identified 4 diapause-up-regulated clones, 7 diapause-down-regulated clones, 8 clones expressed equally in both diapause and nondiapause, and 75 clones without detectable expression. The diapause-up-regulated and down-regulated clones were further characterized by partial DNA sequencing and identity searches by using GenBank. Identities between our cloned cDNAs and other genes included those linked to cell cycle progression, stress responses, and DNA repair processes. The results suggest that insect diapause is not merely a shutdown of gene expression but is a unique, developmental pathway characterized by the expression of a novel set of genes.  相似文献   
10.
Drivers were asked to execute last-second braking and steering maneuvers while approaching a surrogate target lead vehicle. This surrogate target was designed to allow safely placing naive drivers in controlled, realistic rear-end crash scenarios under test track conditions. Maneuver intensity instructions were varied so that drivers' perceptions of normal and non-normal braking envelopes could be properly identified and modeled for forward collision warning timing purposes. The database modeled includes 3536 last-second braking judgment trials. A promising inverse time-to-collision model was developed, which assumes that the driver deceleration response in response to a crash alert is based on an inverse time-to-collision threshold that decreases linearly with driver speed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号