首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
化学工业   3篇
轻工业   1篇
无线电   3篇
自动化技术   1篇
  2023年   1篇
  2022年   1篇
  2018年   1篇
  2013年   1篇
  2012年   3篇
  2009年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
In recent years, there has been considerable interest in icariin (ICA) and its derivates, icariside II (ICS) and icaritin (ICT), due to their wide range of potential applications in preventing cancer, cardiovascular disease, osteoporosis, delaying the effects of Alzheimer’s disease, treating erectile dysfunction, etc. However, their poor water solubility and membrane permeability, resulting in low bioavailability, dampens their potential beneficial effects. In this regard, several strategies have been developed, such as pharmaceutical technologies, structural transformations, and absorption enhancers. All these strategies manage to improve the bioavailability of the above-mentioned flavonoids, thus increasing their concentration in the desired places. This paper focuses on gathering the latest knowledge on strategies to improve bioavailability for enhancing the efficacy of icariin, icariside II, and icaritin. We conclude that there is an opportunity for many further improvements in this field. To the best of our knowledge, no such review articles scoping the bioavailability improvement of icariin and its derivates have been published to date. Therefore, this paper can be a good starting point for all those who want to deepen their understanding of the field.  相似文献   
2.
3.
Fractional calculus has been gaining more and more popularity in control engineering in numerous fields, including mechatronic applications. One of the most common applications in all mechatronic domains is the control of DC motors. Several control algorithms have been proposed for such motors, ranging from traditional PID algorithms, to the more sophisticated advanced methods, including fractional order controllers. Nevertheless, very little information regarding the implementation problems of such fractional algorithms exists today. The paper proposes a simple approach for designing a fractional order PI controller for controlling the speed of a DC motor. The resulting controller is implemented on an FPGA target and its performance is compared to other possible benchmarks. The experimental results show the efficiency of the designed fractional order PI controller. Beside the initial DC motor, two other different DC motors are also used in the experiments to demonstrate the robustness of the controller.  相似文献   
4.
The process of enriching the 13C isotope, performed in trains of cryogenic distillation columns, exhibits large settling times, nonlinearities, large dead‐times, and are difficult to model precisely. Such equipment has been developed in Romania, with concentration increasing up to 70 %. A control analysis for a single unit has already been done including a decentralized multivariable PI controller and two decoupling control algorithms based on the internal model control (IMC) approach. Here, a multivariable predictive controller, the extended prediction self‐adaptive controller is proposed. The simulation results, considering significant modeling errors, demonstrate that this represents a more suitable choice than the previously designed strategies. Comparisons are included to support this idea.  相似文献   
5.
Controller design for an isotope separation column is recognized as a difficult and challenging problem. The dynamics of the isotope separation process is difficult to model precisely using integer order transfer functions; thus, a fractional order approach is preferred. The objective of this work is to design two different PI controllers??a classical one and a fractional order one??and test their closed loop performance under nominal conditions as well as gain uncertainties. Since the process is represented by a fractional order mathematical model, the simplest approach to design both controllers is based on a frequency specification. For the fractional order of the PI controller and its parameters, the authors solve a system of equations that includes a robust performance specification to gain uncertainties. For the classical PI controller, a traditional tuning algorithm based on phase margin specification is implemented. The simulation results show that both controllers meet the design specifications, with the fractional order PI controller behaving more robustly to plant gain variations.  相似文献   
6.
High‐accuracy photopyroelectric measurements, in the thermal‐wave‐resonator‐cavity configuration, were performed in order to measure the thermal diffusivity of some vegetable oils. The high resolution (relative error ±0.5%) of the above method allows for the detection of small changes in the values of this dynamic thermal parameter. The accuracy of the results is mainly due to the possibility to precisely control the variation (30‐nm step) of sample thickness, a proper selection of the range of the thickness scan (2 µm < Lm < 4 µm ? 5 µm), and an iterative procedure of data analysis. A correlation between thermal diffusivity and the fatty acid composition (obtained via gas chromatography) is suggested for some fresh (sunflower, hemp, flax, and soybean) oils and for hemp oil exposed to a microwave field: Thermal diffusivity appears to be determined by the overall content of polyunsaturated fatty acids.  相似文献   
7.
In this paper, we investigate the robustness of a methodology to design fractional order PI controllers combined with Smith Predictors, for varying time delay processes. To overcome the drawback of possible instability associated with Smith Predictor control structures, mainly due to the changes in the time delay, the design focuses on ensuring robustness of the closed loop system against time delay uncertainties. The proposed method is based on time-domain performance specifications??more accessible to the process engineer, rather than the more abstract notions related to the frequency domain. A second advantage of the proposed method relies on additional robustness to plant uncertainties, achieved by maximizing open-loop gain margin. The convergence problems associated with optimization techniques, previously used in fractional order controller designs, are eliminated by an iterative procedure in computing the gain margin. The simulation example provided demonstrates the efficiency of the proposed method, in comparison to classical integer order PI controller.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号