首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   17篇
电工技术   1篇
化学工业   74篇
金属工艺   4篇
机械仪表   2篇
建筑科学   2篇
能源动力   2篇
轻工业   26篇
无线电   32篇
一般工业技术   39篇
冶金工业   26篇
自动化技术   7篇
  2023年   8篇
  2022年   2篇
  2021年   10篇
  2020年   10篇
  2019年   7篇
  2018年   13篇
  2017年   3篇
  2016年   7篇
  2015年   8篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   10篇
  2010年   9篇
  2009年   8篇
  2008年   5篇
  2007年   10篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1998年   13篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   7篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1976年   6篇
  1975年   1篇
  1974年   1篇
  1960年   1篇
  1959年   1篇
排序方式: 共有215条查询结果,搜索用时 15 毫秒
1.
2.
3.
Oxygen-redox-based-layered cathode materials are of great importance in realizing high-energy-density sodium-ion batteries (SIBs) that can satisfy the demands of next-generation energy storage technologies. However, Mn-based-layered materials (P2-type Na-poor Nay[AxMn1−x]O2, where A = alkali ions) still suffer from poor reversibility during oxygen-redox reactions and low conductivity. In this work, the dual Li and Co replacement is investigated in P2-type-layered NaxMnO2. Experimentally and theoretically, it is demonstrated that the efficacy of the dual Li and Co replacement in Na0.6[Li0.15Co0.15Mn0.7]O2 is that it improves the structural and cycling stability despite the reversible Li migration from the transition metal layer during de-/sodiation. Operando X-ray diffraction and ex situ neutron diffraction analysis prove that the material maintains a P2-type structure during the entire range of Na+ extraction and insertion with a small volume change of ≈4.3%. In Na0.6[Li0.15Co0.15Mn0.7]O2, the reversible electrochemical activity of Co3+/Co4+, Mn3+/Mn4+, and O2-/(O2)n- redox is identified as a reliable mechanism for the remarkable stable electrochemical performance. From a broader perspective, this study highlights a possible design roadmap for developing cathode materials with optimized cationic and anionic activities and excellent structural stabilities for SIBs.  相似文献   
4.
The use of external electric and magnetic fields for the synthesis and processing of inorganic materials such as metals and ceramics has seen renewed interest in recent years. Electromagnetic energy can be utilized in different ways to improve or accelerate phase formation and stabilization, chemical ordering, densification and coarsening of particle-based materials (pore elimination and grain growth), and mechanical deformation (plasticity and creep). In these new synthesis and processing routes, the resulting microstructures and macroscopic material behavior are determined by the interaction of the applied fields with defects such as single or clustered point defects, dislocation networks, and interfaces. Multiscale experimental investigations and modeling are necessary to unveil the mechanisms underlying this field-assisted manipulation of matter.  相似文献   
5.
Flash spark plasma sintering (flash SPS) is an attractive method to obtain Nd–Fe–B magnets with anisotropic magnetic properties when starting from melt-spun powders. Compared to the benchmark processing route via hot pressing with subsequent die upsetting, flash SPS promises electroplasticity as an additional deformation mechanism and reduced tool wear, while maximizing magnetic properties by tailoring the microstructure—fully dense and high texture. A detailed parameter study is conducted to understand the influence of Flash SPS parameters on the densification and magnetic properties of commercial MQU-F powder. It is revealed that the presintering conditions and preheating temperature before applying the power pulse play a major role for tailoring grain size and texture in the case of hot deformation via Flash SPS. Detailed microstructure and magnetic domain evaluation disclose the texture enhancement with increasing flash SPS temperature at the expense of coercivity. The best compromise between remanence and coercivity (1.37 T and 1195 kA m−1, respectively) is achieved through a combination of presintering at 500 °C for 120 s and preheating temperature of 600 °C, resulting in a magnet with energy product (BH)max of 350 kJm−3. These findings show the potential of flash SPS to obtain fully dense anisotropic nanocrystalline magnets with high magnetic performance.  相似文献   
6.
Novel sintering methods have emerged in the recent past years, which have raised great interest in the scientific community. Relying on electric field effects, high heating rates, the use of mechanical pressure, or hydrothermal conditions, they offer fundamental advantages compared to conventional sintering routes like minimizing the energy consumption and enhancing the process efficiency. This perspective aims at explaining these effects in a general way and presenting the status quo of using them for the processing of high-performing ceramic materials. In detail, this work focuses on flash sintering, ultrafast high-temperature sintering, spark plasma sintering, cold sintering, and photonic sintering methods based on different light sources. The specificities, potentials, and limitations of each method are compared, especially in the light of a possible industrialization.  相似文献   
7.
In this work, dense monolithic polymer‐derived ceramic nanocomposites (SiOC, SiZrOC, and SiHfOC) were synthesized via hot‐pressing techniques and were evaluated with respect to their compression creep behavior at temperatures beyond 1000°C. The creep rates, stress exponents as well as activation energies were determined. The high‐temperature creep in all materials has been shown to rely on viscous flow. In the quaternary materials (i.e., SiZrOC and SiHfOC), higher creep rates and activation energies were determined as compared to those of monolithic SiOC. The increase in the creep rates upon modification of SiOC with Zr/Hf relies on the significant decrease in the volume fraction of segregated carbon; whereas the increase of the activation energies corresponds to an increase of the size of the silica nanodomains upon Zr/Hf modification. Within this context, a model is proposed, which correlates the phase composition as well as network architecture of the investigated samples with their creep behavior and agrees well with the experimentally determined data.  相似文献   
8.
Dual‐phase oxygen transport membranes are fast‐growing research interest for application in oxyfuel combustion process. One such potential candidate is CGO‐FCO (60 wt% Ce0.8Gd0.2O2?δ–40 wt% FeCo2O4) identified to provide good oxygen permeation flux with substantial stability in harsh atmosphere. Dense CGO‐FCO membranes of 1 mm thickness were fabricated by sintering dry pellets pressed from powders synthesized by one‐pot method (modified Pechini process) at 1200°C for 10 h. Microstructure analysis indicates presence of a third orthorhombic perovskite phase in the sintered composite. It was also identified that the spinel phase tends to form an oxygen deficient phase at the grain boundary of spinel and CGO phases. Surface exchange limitation of the membranes was overcome by La0.6Sr0.4Co0.2Fe0.8O3?δ (LSCF) porous layer coating over the composite. The oxygen permeation flux of the CGO‐FCO screen printed with a porous layer of 10 μm thick LSCF is 0.11 mL/cm2 per minute at 850°C with argon as sweep and air as feed gas at the rates of 50 and 250 mL/min.  相似文献   
9.
We report the sintering behavior of nanocrystalline zinc oxide under external AC electric field between 0 and 160 V/cm. In situ acquisition of density by means of laser dilatometry, evaluation of specimen temperature, real‐time measurement of electric field and current help analyze this peculiar behavior. Field strength and blocking electrodes significantly affect densification and microstructure, which was evaluated in the vicinity of the flash event and for the fully sintered material. High current densities flow through the sample at high electric fields, entailing a sudden increment of the temperature estimated to several hundreds of K and an exaggerated grain growth. In contrast, low current density flows through the sample at lower electric fields, which guarantees normal grain growth and highest final density. Macroscopic photoluminescence measurements give insights into the development of the defect structure. Electric fields are expected to enhance defect mobility, explaining the high densification rates observed during the sintering process.  相似文献   
10.
Weakly acceptor-doped ceria ceramics were characterized structurally and compositionally with advanced transmission electron microscopy (TEM) techniques and electrically with electrochemical impedance spectroscopy (EIS). The grain boundaries studied with TEM were found to be free of second phases. The impedance spectra, acquired in the range 703 ≤ T/K ≤ 893 in air, showed several arcs that were analyzed in terms of bulk, grain-boundary, and electrode responses. We ascribed the grain-boundary resistance to the presence of space-charge layers. Continuum-level simulations were used to calculate charge-carrier distributions (of acceptor cations, oxygen vacancies, and electrons) in these space-charge layers. The acceptor cations were assumed to be mobile at high (sintering) temperatures but immobile at the temperatures of the EIS measurements. Space-charge formation was assumed to be driven by the segregation of oxygen vacancies to the grain-boundary core. Comparisons of data from the simulations and from the EIS measurements yielded space-charge potentials and the segregation energy of vacancies to the grain-boundary core. The space-charge potentials from the simulations are compared with values obtained by applying the standard, analytical (Mott–Schottky and Gouy–Chapman) expressions. The importance of modelling space-charge layers from the thermodynamic level is demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号