首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   2篇
化学工业   7篇
金属工艺   1篇
轻工业   8篇
石油天然气   1篇
无线电   12篇
一般工业技术   12篇
冶金工业   2篇
自动化技术   21篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   6篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1990年   3篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
This paper introduces an efficient approach to protect the ownership by hiding an iris data into digital image for an authentication purpose. It is based on the theory of wavelets. The idea is to secretly embed biometric data (iris print) in the content of the image identifying the owner. The system is based on an empirical analysis of biometric and watermarking technologies, and it is split into several processes. The first process is based on iris image analysis, which aids the generation of the iris code (watermark); the second and the third processes deal with embedding and detecting a watermark; and the last process deals with the authentication. A new metric that measures the objective quality of the image based on the detected watermark bit is introduced, which does not require the original unmarked image for watermark detection. Simulation results show the effectiveness and efficiency of the proposed approach. The text was submitted by the author in English.  相似文献   
2.
We describe a straightforward technique to synthesize pure Mo nanowires (NWs) from Mo6SyIz (8,2 <y + z ≤ 10) NWs as precursor templates. The structural transformations occur when Mo6SyIz NWs are annealed in Ar/H2 mixture leading to the formation of pure Mo NWs with similar structures as initial morphologies. Detailed microscopic characterizations show that large diameters (>15 nm) Mo NWs are highly porous, while small diameters (<7 nm) are made of solid nanocrystalline grains. We find NW of diameter 4 nm can carry up to 30 μA current without suffering structural degradation. Moreover, NWs can be elastically deformed over several cycles without signs of plastic deformation.  相似文献   
3.
Highly dispersive Cu2ZnSnS4 (CZTS) nanoparticles were successfully synthesized by a simple solvothermal route. A low cost, non-vacuum method was used to deposit CZTS nanoparticle ink on glass substrates by a doctor blade process followed by selenization in a tube furnace to form Cu2ZnSn (S,Se)4 (CZTSSe) layers. Different selenization conditions and particle concentrations were considered in order to improve the crystallinity and surface morphology; the annealing temperature was varied between 400°C and 550°C and the annealing time was varied between 5 min and 20 min in a selenium-nitrogen atmosphere. The influence of annealing conditions on structural, compositional, optical and electrical properties of CZTSSe thin films was studied. An improvement in the structural and surface morphology was observed with increasing of annealing temperature (up to 500°C). An enhancement in the crystallinity and surface morphology were observed for thin films annealed for 10–15 min. Absorption study revealed that the band gap energy of as-deposited CZTS thin film was approximately 1.43 eV, while for CZTSSe thin films it ranged from 1.15 eV to 1.34 eV at different annealing temperatures, and from 1.33 eV to 1.38 eV for different annealing times.  相似文献   
4.
5.
6.
Optical constants (refractive index, n, and absorption index, k) of the as-deposited and annealed films of 5,10,15,20-tetraphenyl-21H, 23H-porphine iron (III) chloride (FeTPPCl) have been obtained in the wavelength range 190–2500 nm by using spectrophotometric measurements. The obtained optical constants were used to estimate the type of transition for the as-deposited and annealed films. We present a single oscillator model that describes the dispersion of refractive index. Drude model of free carriers absorption have been described for the analysis the dispersion of refractive index dispersion before and after annealing.  相似文献   
7.
8.
9.
The Internet of Things (IoT) is a connection amongst people and applications to another dimension of machine‐to‐machine communication. IoT scenario is unequivocally related with the development of the advancement of wireless sensor systems (WSNs) and radio‐frequency identification (RFID) frameworks. Owing to the technological advances around the world, energy demand is increasing exponentially. Energy proficiency has turned out to be one of the real worries in the present life that essentially influence every single human action. In communication system, return loss is a major issue for transmission process. Owing to return loss, a huge amount of power consumption occurs. This phenomenon is contemporary with transmission process, and it will initiate a serious problem for high‐speed moving substance like aircraft, rockets, and spaceship. To overcome this problem, a four‐element cylindrical antenna (conformal) array with better axial radiation is proposed. The four U‐shaped slots are uniformly wrapped around on a cylindrical surface, which produces tilted radiation. To enhance the axial radiation, four conformal elements are reefed by a one‐ to four‐microstrip feed network. The proposed conformal design has a bandwidth of 200 MHz (narrow bandwidth) at the center frequency of 3.9 GHz, covering the range of 3 to 3.9 GHz, with the gain of 4.9 dBic, and can be suitable for unmanned aerial vehicles (UAV), wireless avionics intra‐communication (WAIC), and so forth. The proposed design is low profile and can be used for high‐speed avionic applications. Finally, machine learning technique is explored to design a model for a smart antenna with optimistic parameters to reduce return loss and enhance the transmission rate.  相似文献   
10.
Currently, COVID-19 is spreading all over the world and profoundly impacting people’s lives and economic activities. In this paper, a novel approach called the COVID-19 Quantum Neural Network (CQNN) for predicting the severity of COVID-19 in patients is proposed. It consists of two phases: In the first, the most distinct subset of features in a dataset is identified using a Quick Reduct Feature Selection (QRFS) method to improve its classification performance; and, in the second, machine learning is used to train the quantum neural network to classify the risk. It is found that patients’ serial blood counts (their numbers of lymphocytes from days 1 to 15 after admission to hospital) are associated with relapse rates and evaluations of COVID-19 infections. Accordingly, the severity of COVID-19 is classified in two categories, serious and non-serious. The experimental results indicate that the proposed CQNN’s prediction approach outperforms those of other classification algorithms and its high accuracy confirms its effectiveness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号