首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4376篇
  免费   112篇
  国内免费   11篇
电工技术   224篇
综合类   9篇
化学工业   934篇
金属工艺   109篇
机械仪表   83篇
建筑科学   83篇
矿业工程   3篇
能源动力   192篇
轻工业   295篇
水利工程   12篇
石油天然气   8篇
无线电   482篇
一般工业技术   703篇
冶金工业   906篇
原子能技术   108篇
自动化技术   348篇
  2023年   21篇
  2022年   45篇
  2021年   71篇
  2020年   26篇
  2019年   39篇
  2018年   58篇
  2017年   44篇
  2016年   70篇
  2015年   49篇
  2014年   98篇
  2013年   176篇
  2012年   161篇
  2011年   177篇
  2010年   150篇
  2009年   156篇
  2008年   171篇
  2007年   159篇
  2006年   127篇
  2005年   142篇
  2004年   118篇
  2003年   131篇
  2002年   119篇
  2001年   105篇
  2000年   111篇
  1999年   110篇
  1998年   391篇
  1997年   220篇
  1996年   156篇
  1995年   115篇
  1994年   101篇
  1993年   96篇
  1992年   47篇
  1991年   47篇
  1990年   40篇
  1989年   58篇
  1988年   36篇
  1987年   35篇
  1986年   39篇
  1985年   38篇
  1984年   48篇
  1983年   43篇
  1982年   38篇
  1981年   43篇
  1980年   34篇
  1979年   37篇
  1978年   39篇
  1977年   41篇
  1976年   48篇
  1975年   18篇
  1974年   17篇
排序方式: 共有4499条查询结果,搜索用时 234 毫秒
1.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
2.
3.
4.
A lotus-type porous carbon steel with cylindrical pores was fabricated by the continuous zone melting method in a pressurized mixture of hydrogen and helium gases. The porosity increases with increasing partial pressure of the hydrogen gas, while the pore diameter remains almost constant, independent of the pressure. The ultimate tensile strength of the specimen with cylindrical pores parallel to the tensile direction is lower than the estimated value, assuming that the strength is decreased in proportion to the decrease of the cross-sectional area of the specimen, while the yield strength is higher than the estimated value. The compressive yield strength is also higher than the estimated value. The increase in yield strength is considered to be due to precipitation strengthening. The tensile strength is increased by quenching and tempering, while the elongation decreases. Such mechanical properties are discussed in terms of the microstructural analysis.  相似文献   
5.
This paper introduces a new concept of testability called consecutive testability and proposes a design-for-testability method for making a given SoC consecutively testable based on integer linear programming problem. For a consecutively testable SoC, testing can be performed as follows. Test patterns of a core are propagated to the core inputs from test pattern sources (implemented either off-chip or on-chip) consecutively at the speed of system clock. Similarly the test responses are propagated to test response sinks (implemented either off-chip or on-chip) from the core outputs consecutively at the speed of system clock. The propagation of test patterns and responses is achieved by using interconnects and consecutive transparency properties of surrounding cores. All interconnects can be tested in a similar fashion. Therefore, it is possible to test not only logic faults but also timing faults that require consecutive application of test patterns at the speed of system clock since the consecutively testable SoC can achieve consecutive application of any test sequence at the speed of system clock.  相似文献   
6.
A synthetic polymer with a laminin-apatite composite layer on its surface would be useful as a percutaneous device. The preparation of such a composite was attempted in the present study using poly( ethylene terephthalate ) (PET) and polyethylene (PE) as the synthetic polymer. PET and PE plates and those pretreated with an oxygen plasma were alternately dipped in calcium and phosphate ion solutions, and then immersed in a metastable calcium phosphate solution supplemented with laminin ( LCP solution ). The PET and PE plates pretreated with an oxygen plasma formed a uniform and continuous layer of a laminin-apatite composite on their surfaces. In contrast, the PET and PE plates that had not been pretreated with an oxygen plasma did not form a continuous layer of a laminin-apatite composite on their surfaces. The hydrophilic functional groups on the PET and PE surfaces introduced by the plasma treatment were responsible for the successful laminin-apatite coruposite coating.  相似文献   
7.
Fluoroalkyl end-capped N-(1,1-dimethyl-3-oxobutyl)acrylamide oligomer [RF-(DOBAA) n -RF] reacted with tetraethoxysilane (TEOS) and silica nanoparticles in the presence of low-molecular weight biocides such as hibitane, hinokitiol, and hinokioil under alkaline conditions to afford RF-(DOBAA) n -RF/silica nanocomposites-encapsulated these biocides in excellent to moderate isolated yields. Fluoroalkyl end-capped N,N-dimethylacrylamide oligomer [RF-(DMAA) n -RF] and acrylic acid oligomer [RF-(ACA) n -RF]/silica nanocomposites-encapsulated hibitane were obtained under similar conditions. Dynamic light scattering measurements showed that the size of these fluorinated nanocomposites-encapsulated biocides thus obtained is nanometer size-controlled. Additionally, these fluorinated nanocomposites were shown to have a good dispersibility and stability in methanol and water. Of particular interest, these fluorinated nanocomposites-encapsulated biocides were found to have a good antibacterial activity against Staphylococcus aureus, and these nanocomposites were applied to the surface modification of traditional organic polymers such as poly(methyl methacrylate).  相似文献   
8.
The effect of CF4 plasma etching on diamond surfaces, with respect to treatment time, was investigated using scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. SEM observations and Raman spectra indicated an increase in surface roughening on a scale of 10–20 nm, and an increase in crystal defect density was apparent with treatment time in the range of 10 s to 30 min. In contrast, alteration of the diamond surface terminations from oxygen to fluorine was found to be rather rapid, with saturation of the F/C atomic ratio estimated from XPS analysis after treatment durations of 1 min and more. The redox kinetics of Fe(CN)63−/4− was also found to be significantly modified after 10 s of CF4 plasma treatment. This behavior shows that C–F terminations predominantly affect the redox kinetics compared to the effect on the surface roughness and crystal defects. The double-layer capacitance (Cdl) of the electrolyte/CF4 plasma-treated boron-doped diamond interface was found to show a minimum value at 1 min of treatment. These results indicate that a short-duration CF4 plasma treatment is effective for the fabrication of fluorine-terminated diamond surfaces without undesirable surface damage.  相似文献   
9.
This study was performed in order to clarify crack opening displacement (COD) of through-wall cracks in a plate subjected to bending load. The former COD evaluation methods were mainly developed corresponding to tensile load, but there has been nothing that has been developed corresponding to bending load. Therefore, the authors evaluated CODs of the through-wall cracks in plates which were subjected to a bending load using finite element method (FEM) analyses, and proposed a simplified COD evaluation method accounting for both tensile and bending loads. The proposed method is useful for leakage evaluation at a crack opening of an elbow crown or in the vicinity of the coolant surface of a vessel in which the bending stress is relatively large.  相似文献   
10.
Titanium Dioxide, TiO2, is a photocatalyst with a unique characteristic. A surface coated with TiO2 exhibits an extremely high affinity for water when exposed to UV light and the contact angle decreases nearly to zero. Inversely, the contact angle increases when the surface is shielded from UV. This superhydrophilic nature gives a self-cleaning effect to the coated surface and has already been applied to some construction materials, car coatings and so on. We applied this property to the enhancement of boiling heat transfer. An experiment involving the pool boiling of pure water has been performed to make clear the effect of high wettability on heat transfer characteristics. The heat transfer surface is a vertical copper cylinder of 17 mm in diameter and the measurement has been done at saturated temperature and in a steady state. Both TiO2-coated and non-coated surfaces were used for comparison. In the case of the TiO2-coated surface, it is exposed to UV light for a few hours before experiment and it is found that the maximum heat flux (CHF) is about two times larger than that of the uncoated surface. The temperature at minimum heat flux (MHF) for the superhydrophilic surface is higher by 100 K than that for the normal one. The superhydrophilic surface can be an ideal heat transfer surface. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号