首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
化学工业   3篇
机械仪表   4篇
轻工业   1篇
无线电   4篇
一般工业技术   7篇
冶金工业   2篇
自动化技术   5篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1980年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
2.
Bartel S  Hielscher AH 《Applied optics》2000,39(10):1580-1588
We have developed a Monte Carlo algorithm that computes all two-dimensional elements of the diffuse backscattering Mueller matrix for highly scattering media. Using the Stokes-Mueller formalism and scattering amplitudes calculated with Mie theory, we are able to consider polarization-dependent photon propagation in highly scattering media, including linearly and circularly polarized light. The numerically determined matrix elements are compared with experimental data for different particle sizes and show good agreement in both azimuthal and radial direction.  相似文献   
3.
We present experimental results that show the spatial variations of the diffuse-backscattered intensity when linearly polarized light is incident upon highly scattering media. Experiments on polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor g of the particles that constitute the scattering medium. Measurements performed on biological-cell suspensions show the potential of this method for cell characterization.  相似文献   
4.
Hydroforming: Fundamentals and tendencies in research and developement This report covers the topic of Internal‐High‐Pressure‐Forming. The paper provides an overview of this technology and shows the results of recent developments. This refers to basic investigations as well as industrial applications.  相似文献   
5.
We present numerical and experimental results of time-resolved emission profiles from various layered turbid media. Numerical solutions determined by time-resolved Monte Carlo simulations are compared with measurements on layered-tissue phantoms made from gelatin. In particular, we show that in certain cases the effects of the upper layers can be eliminated. As a practical example, these results are used to analyze in vivo measurements on the human head. This demonstrates the influence of skin, skull, and meninges on the determination of the blood oxygenation in the brain.  相似文献   
6.
We are presenting data from the largest clinical trial on optical tomographic imaging of finger joints to date. Overall we evaluated 99 fingers of patients affected by rheumatoid arthritis (RA) and 120 fingers from healthy volunteers. Using frequency-domain imaging techniques we show that sensitivities and specificities of 0.85 and higher can be achieved in detecting RA. This is accomplished by deriving multiple optical parameters from the optical tomographic images and combining them for the statistical analysis. Parameters derived from the scattering coefficient perform slightly better than absorption derived parameters. Furthermore we found that data obtained at 600 MHz leads to better classification results than data obtained at 0 or 300 MHz.  相似文献   
7.
Gu X  Ren K  Hielscher AH 《Applied optics》2007,46(10):1624-1632
Optical tomography of small imaging domains holds great promise as the signal-to-noise ratio is usually high, and the achievable spatial resolution is much better than in large imaging domains. Emerging applications range from the imaging of joint diseases in human fingers to monitoring tumor growth or brain activity in small animals. In these cases, the diameter of the tissue under investigation is typically smaller than 3 cm, and the optical path length is only a few scattering mean-free paths. It is well known that under these conditions the widely applied diffusion approximation to the equation of radiative transfer (ERT) is of limited applicability. To accurately model light propagation in these small domains, the ERT has to be solved directly. We use the frequency-domain ERT to perform a sensitivity study for small imaging domains. We found optimal source-modulation frequencies for which variations in optical properties, size, and location of a tissue inhomogeneity lead to maximal changes in the amplitude and phase of the measured signal. These results will be useful in the design of experiments and optical tomographic imaging systems that probe small tissue volumes.  相似文献   
8.
We analyse the limits of the diffusion approximation to the time-independent equation of radiative transfer for homogeneous and heterogeneous biological media. Analytical calculations and finite-difference simulations based on diffusion theory are compared with discrete-ordinate, finite-difference transport calculations. The influence of the ratio of absorption and transport scattering coefficient (mu(a)/mu'(s)) on the accuracy of the diffusion approximation are quantified and different definitions for the diffusion coefficient, D, are discussed. We also address effects caused by void-like heterogeneities in which absorption and scattering are very small compared with the surrounding medium. Based on results for simple homogeneous and heterogeneous systems, we analyse diffusion and transport calculation of light propagation in the human brain. For these simulations we convert density maps obtained from magnetic resonance imaging (MRI) to optical-parameter maps (mu(a) and mu'(s)) of the brain. We show that diffusion theory fails to describe accurately light propagation in highly absorbing regions, such as haematoma, and void-like spaces, such as the ventricles and the subarachnoid space.  相似文献   
9.
The performance of communication systems can be evaluated using various distinct techniques and paradigms, e.g. queuing theory, simulation or worst case analysis. Mean values for performance measures like transmission delay, queue length or system utilization are valuable information for network dimensioning. However, in many cases, quantile-based approaches or deterministic upper bounds are indispensable, especially for systems that need real-time guarantees. A typical application area are safety-critical functions in automotive environments, where hard real-time transmission deadlines have to be met to assure safe operation of the vehicle. In this paper, we investigate a contemporary automotive in-car communication system, the Controller Area Network (CAN). A simulation study of the system yields stochastic quantile-related use case performance measures for non-time-critical communication. It is complemented by a deterministic evaluation using Network Calculus, which allows to determine worst case transmission times and provides closed and easily applicable formulas for delay bounds of messages on all priority levels. Comprising the outcomes from this dual evaluation approach supports the design, dimensioning and parameterization of the overall CAN bus system with respect to both hard real-time demands and performance characteristics in typical use case scenarios.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号