首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
无线电   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
In frequency-selective multiple-input multiple-output (MIMO) channel, differential space-time-frequency (DSTF) modulations are known as practical alternatives that are capable of exploiting the available spatial and frequency diversities without the requirement of multichannel estimation at the receiver. However, the encoding nature of the DSTF schemes that expand several OFDM symbol periods makes the DSTF schemes susceptible to fast-changing channel conditions. In this paper, we propose a differential scheme for MIMO-OFDM systems that is able to differentially encode signal within two OFDM symbol periods, and the proposed scheme transmits the differentially encoded signal within one OFDM block. The scheme not only reduces encoding and decoding delay but also relaxes the restriction on channel assumption. The successful differential decoding of the proposed scheme depends on the assumption that the fading channels keep constant over two OFDM symbol periods rather than multiple of them as required in the existing DSTF schemes. We also provide pairwise error probability analysis and quantify the performance criteria in terms of diversity and coding advantages. The design criteria reveal that the existing diagonal cyclic codes can be applied to achieve full diversity. Performance simulations under various channel conditions show that our proposed scheme yields superior performance to previously proposed differential schemes.  相似文献   
2.
Extending lifetime of battery-operated devices is a key design issue that allows uninterrupted information exchange among distributed nodes in wireless networks. Cooperative communications has recently emerged as a new communication paradigm that enables and leverages effective resource sharing among cooperative nodes. In this paper, a general framework for lifetime extension of battery-operated devices by exploiting cooperative diversity is proposed. The framework efficiently takes advantage of different locations and energy levels among distributed nodes. First, a lifetime maximization problem via cooperative nodes is considered and performance analysis for M-ary PSK modulation is provided. With an objective to maximize the minimum device lifetime under a constraint on bit-error-rate performance, the optimization problem determines which nodes should cooperate and how much power should be allocated for cooperation. Since the formulated problem is NP hard, a closed-form solution for a two-node network is derived to obtain some insights. Based on the two-node solution, a fast suboptimal algorithm is developed for multi-node scenarios. Moreover, the device lifetime is further improved by a deployment of cooperative relays in order to help forward information of the distributed nodes in the network. Optimum location and power allocation for each cooperative relay are determined with an aim to maximize the minimum device lifetime. A suboptimal algorithm is developed to solve the problem with multiple cooperative relays and cooperative nodes. Simulation results show that the minimum device lifetime of the network with cooperative nodes improves 2 times longer than the lifetime of the non-cooperative network. In addition, deploying a cooperative relay in a proper location leads up to 12 times longer lifetime than that of the non-cooperative network  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号