首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
无线电   1篇
  1992年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The transmission of excitation via electric field coupling was studied in a model comprising two myocytes abutted end-to-end and placed in an unbounded volume conductor. Each myocyte was modeled as a small cylinder of membrane (10 microns in diameter and 100 microns in length) capped at both ends. A Beeler-Reuter model modified for the Na+ current dynamics served to simulate the membrane ionic current. There was no resistive coupling between the myocytes and the intercellular junction consisted of closely apposed pre- and post-junctional membranes, separated by a uniform cleft distance. The membrane current crossing the prejunctional membrane during the action potential upstroke tends to flow out of the cleft, but it is partly prevented from doing so by the shunt resistance constituted by the cleft volume conductor. The prejunctional upstroke gives rise to a pulse of positive potential within the cleft which induces a small capacitive current across the post-junctional membrane to yield a small positive change in the intracellular potential in the post-junctional cell. The net result is an hyperpolarization of the post-junctional cleft membrane and a slight depolarization of the rest of the cell membrane since the extracellular potential outside of the cell is zero. The magnitude of this depolarization is quite small for a flat junctional membrane and it can be increased by membrane folding and interdigitation, so as to increase the junctional membrane area by a factor of 10 or more. Even then the post-junctional depolarization does not reach threshold when the extracellular potential around the post-junctional cell is effectively zero. Threshold depolarization occurs in the presence of a large decrease of post-junctional load, by increasing the junctional membrane capacitance and/or decreasing the volume of the post-junctional cell. Assuming that the normal resistive coupling between two cardiac myocytes is 1-4 M omega, our model study indicates that electric field coupling would then be about two orders of magnitude smaller. However, substantial enhancement of the efficacy of electric field transmission was observed in the case of cells with substantial junctional membrane folding.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号