首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
电工技术   2篇
综合类   1篇
化学工业   14篇
机械仪表   10篇
建筑科学   1篇
轻工业   1篇
石油天然气   3篇
无线电   8篇
一般工业技术   5篇
冶金工业   1篇
自动化技术   16篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   16篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1974年   1篇
排序方式: 共有62条查询结果,搜索用时 296 毫秒
1.
Fractions of Elbistan and Seyitomer (Turkish) lignites, extracted with supercritical toluene at 340 °C and 8 MPa, have been separated by solvent extraction and silica-gel chromatography. Analyses by n.m.r. and i.r. spectroscopies and other methods have been combined in structural-analysis schemes to yield information about the average molecule in aromatic extracts. Carbon aromaticities, fa, derived from 22.63 MHz 1H-decoupled pulse Fourier-transform (PFT) 13C-n.m.r. are more widely spread for Elbistan (0.34–0.56) than for Seyitomer (0.40–0.43), and are lower than for supercritical-gas (SCG) products from bituminous coals. 13C-n.m.r. also reveals the presence of aromatic ether-O in polar fractions. Narrow aromatic signals in 100 MHz 1H-n.m.r. spectra suggest the presence of single-aromatic-ring average structures. In the hexane-soluble aromatics, 27% (Elbistan) and 29% (Seyitomer) of the available sites are substituted by alkyI groups, some of which are at least eight carbon atoms long; the hexane-soluble polar and asphaltene/asphaltol fractions contain fewer such groups.  相似文献   
2.
Branched-chain/cyclic alkanes have been obtained, by solvent extraction and molecular-sieve adsorption, from a UK low-temperature (Rexco) coal tar, a USA fluidized-bed pyrolysis (FMC COED) coal tar, and a novel supercritical-gas-extract of a Turkish (Elbistan) lignite. Mass spectrometry (with gas chromatography and field-desorption) established the presence of mono-, di (including sesquiterpanes), tri-, tetra- (steranes only), and pentacyclic (triterpanes only) alkanes, including several steranes and triterpanes not previously reported as coal-tar constituents. The potential of cyclic alkanes as geochemical markers, even for commercial coal products subjected to appreciable heat treatment, is demonstrated by the identification of C12, C13, C15 and C16 dicyclics (including isoprenoid alkanes), C17-C26 tricyclics, and C27 and C29 hopane-type pentacyclics (triterpanes) in FMC, and of C16-C38 monocyclics, C34-C36 dicyclics, C22-C36 tricyclics, C27-C30 tetracyclics (steranes), and C27, C29, C30, C31, C32, and C33 hopane-type pentacyclics (triterpanes) in Rexco tar. Tetra- and pentacyclic alkanes were also preserved in the lignite extract.  相似文献   
3.
The ankle strategy is one of the postural adjustment maneuvers humans utilize when the support platform is disturbed. This paper presents a quantitative analysis of the ankle strategy. A three-link sagittal biped model is considered. The first link represents the two legs locked together. The second link represents the two thighs locked together. The third link represents the hip, the torso, the upper limbs, the neck, and the head. The dynamics, control, and stability of the three-link biped, under platform translation, are considered. The disturbance of the platform is represented as an input and the effect of the muscular system is reduced to a set of torques applied to the joints and across the joints. Two digital computer simulations are presented to demonstrate the behavior of the biped under backward or forward platform disturbance. The simulations are compared with experimental measurements of humans subjected to postural disturbances. It is shown that the effect of a horizontal disturbance at the ankle appears to be about 40 times that of the effect of the disturbance at the knees and at least a few hundred times larger than the effect of a disturbance at the hip. This means that, under translational platform disturbance, the ankle angle is subjected to the largest excursion. The knee and the hip angle excursions are relatively minor. Consequently, the biped, as a whole, appears to move as a single inverted pendulum. Major postural corrections are initiated by the ankle excursion. Further, when the available ankle torque is limited or nonexistent, the stability requires resorting to the knee or hip strategies.  相似文献   
4.
Lyapunov stability of constrained and embedded rigid bodies is considered. The constraints are of the equality type where the desired motion is to take place on an a priori defined submanifold of movement. Special and augmented state spaces for the representation of systems of rigid bodies are presented. A systematic method of stabilizing these augmented systems and a procedure for constructing Lyapunov functions are presented. The representation is applicable to augmented as well as reduced state spaces of the system defined by the constraints. The augmented state space results from the embedding of the free rigid body system in the larger state space of free rigid body and position control states, and in which the Lyapunov function is constructed. The reduced state space results when the system is restricted and is reduced to lie on the submanifold of movement. It is shown that, for the class of rigid bodies and the physical constraints considered, the projected feedback structures, and the reduced Lyapunov function constitute appropriate stabilizing structures for the constrained system. It is shown that the method applies equally to holonomically constrained and visco-elastically coupled rigid bodies. Digital computer simulations of one single rigid body system are presented to demonstrate the feasibility and effectiveness of the method. Applications to natural systems and the role of cartilage, ligaments and muscles in maintaining the integrity and stability of the joints are noted.  相似文献   
5.
In this paper, three issues related to three‐dimensional multilink rigid body systems are considered: dynamics, actuation, and inversion. Based on the Newton‐Euler equations, a state space formulation of the dynamics is discussed that renders itself to inclusion of actuators, and allows systematic ways of stabilization and construction of inverse systems. The development here is relevant to robotic systems, biological modeling, humanoid studies, and collaborating man‐machine systems. The recursive dynamic formulation involves a method for sequential measurement and estimation of joint forces and couples for an open chain system. The sequence can start from top downwards or from the ground upwards. Three‐dimensional actuators that produce couples at the joints are included in the dynamics. Inverse methods that allow estimation of these couples from the kinematic trajectories and physical parameters of the system are developed. The formulation and derivations are carried out for a two‐link system. Digital computer simulations of a two‐rigid body system are presented to demonstrate the feasibility and effectiveness of the methods. © 2005 Wiley Periodicals, Inc.  相似文献   
6.
Dancing to a rhythm, as humans do, is a complex process, andformulation of its dynamics and control are very difficult. Rhythmicexchange of the support surfaces and stability of the overall systemare not well understood. To produce a dancing movement, simplermovements such as rocking, tapping, and stepping can be combined. Therhythm of dancing is usually driven by a music beat. A method thatextracts beats from a wide variety of music in real time ispresented. Work is being done to couple the extracted rhythm of themusic to a dancing biped. The seven degree of freedom sagittal bipedwith sixteen actuators is controlled to move in a rocking, tapping,and stepping fashion. A pattern generator is described which takes amusical beat and generates oscillations. The oscillations are usedto select a finite sequence of predefined desired states, and todrive the system from the current desired state to the next. Thesenext desired states allow derivation of neural excitation inputs tothe sixteen muscle-like actuators. Simulations show the feasibilityof the control strategy moving the biped from desired state todesired state as it traverses the trajectories of these three simplermovements of rocking, tapping, and stepping. In a final simulation,the three movements of rocking, stepping, and tapping are combined ina three-step up and down dancing movement.  相似文献   
7.
8.
The experimental investigation was carried out for dry contact tribosystems to elucidate the ascertained, yet uncharacterized, relationship between the coefficient of friction, η and apparent contact geometry in sliders. This paper presents the results of various experimentally evaluated slider pad width to length ratios, B/L (L is signified with direction of motion), while maintaining the unit loading constant. The empirical data is intended to provide guidance in design and in theoretical prediction of optimum bearing geometry for solid/powder lubricated systems.

In this experiment, a liquid lubricant, two different dry powders (MoS2 and TiO2), and four test specimens with B/L ratios ranging from 0.5 to 2.0 were used. An alternative experimental method has been used to simulate wear debris in the dry contact tribosystems, vis-à-vis dry powders, which were introduced into the interface gap to address the affinity of the wear process. Slider pads' performance characteristics as a function of the applied load (ranging from 34.5 to 345 kPa) and surface speed (0.004 to 4.5 m/sec) were determined at ambient condition. Experimental evidence shows that in the pre-hydrodynamic regime (low speed) the friction coefficient, η, decreases as B/L ratio increased from 0.5 to 1.5. Beyond a B/L ratio of 1.5, η increased with increasing B/L ratios. Optimum B/L ratio of 1 (based on measured minimum η) was identified for operation in the hydrodynamic regime. Overall reduction in η as a function of load was observed which is independent of B/L ratio and lubricant type. Also presented are the velocity effects on slider frictional performance.  相似文献   
9.
Compliant foil bearings operate on either gas or liquid, which makes them very attractive for use in extreme environments such as in high-temperature aircraft turbine engines and cryogenic turbopumps. However, a lack of analytical models to predict the dynamic characteristics of foil bearings forces the bearing designer to rely on prototype testing, which is time-consuming and expensive. In this paper, the authors present a theoretical model to predict the structural stiffness and damping coefficients of the bump foil strip in a journal bearing or damper. Stiffness is calculated based on the perturbation of the journal center with respect to its static equilibrium position. The equivalent viscous damping coefficients are determined based on the area of a closed hysteresis loop of the journal center motion. The authors found, theoretically, that the energy dissipated from this loop was mostly contributed by the frictional motion between contact surfaces. In addition, the source and mechanism of the nonlinear behavior of the bump foil strips were examined. With the introduction of this enhanced model, the analytical tools are now available for the design of compliant foil bearings.  相似文献   
10.
With the availability of fast and economical microprocessors, effective design of systems that are immune to failure of individual or groups of sensors, actuators, or computational units is feasible. The system can be made tolerant of the failure of individual subsystems, but functions with reduced efficiency.One way to realize this design is to formulate the dynamics of the systems in larger than minimal state spaces, to process the large number of sensory inputs needed, to relegate control functions to different inputs and to provide reliable communication among the subsystems. The imbedding of the state of the system in a larger state space allows the system to have direct access to its minimal state and indirect access by computing it, hence the need for many sensors. The sensors themselves can then measure directly physical parameters of interest or indirectly by providing a processor with measurements from which the processor computes the needed parameter.This paper deals with the concept of relegation of control as a special kind of generalized nonlinear decoupling control.A structure is proposed that relegates control of specific functions to subsets of inputs. The concept is illustrated by a nonlinear robotic example where the control of constraint forces (due to contact, grip, hold, touch, etc.), control of trajectory of motion, control of stability, and control of collision avoidance are relegated to different inputs. The inputs can be the actuator outputs of force and torque applied to the mechanical system or alternatively the inputs to the actuators themselves. Any conflict in fulfilling the four functions is arbitrated at a higher level. Compromises among the functions, priorities of functions over each other and assignments of inputs in primary, secondary, or as lower contributors to function are elaborated, programmed, and stored. This structure allows integration of a certain amount of intelligence in a robotic system at the lowest level.This work was supported in part by the National Science Foundation under Grant ECS-820-1240 and in part by the Department of Electrical Engineering, The Ohio State University, Columbus, Ohio 43210, U.S.A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号