首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
无线电   16篇
一般工业技术   2篇
  2022年   1篇
  2011年   1篇
  2006年   2篇
  2005年   1篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  1998年   1篇
  1996年   1篇
  1993年   2篇
  1990年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
This paper deals with convex half-quadratic criteria and associated minimization algorithms for the purpose of image restoration. It brings a number of original elements within a unified mathematical presentation based on convex duality. Firstly, the Geman and Yang (1995) and Geman and Reynolds (1992) constructions are revisited, with a view to establishing the convexity properties of the resulting half-quadratic augmented criteria, when the original nonquadratic criterion is already convex. Secondly, a family of convex Gibbsian energies that incorporate interacting auxiliary variables is revealed as a potentially fruitful extension of the Geman and Reynolds construction.  相似文献   
2.
This paper is devoted to adaptive long autoregressive spectral analysis when i) very few data are available and ii) information does exist beforehand concerning the spectral smoothness and time continuity of the analyzed signals. The contribution is founded on two papers by Kitagawa and Gersch (1985). The first one deals with spectral smoothness in the regularization framework, while the second one is devoted to time continuity in the Kalman formalism. The present paper proposes an original synthesis of the two contributions. A new regularized criterion is introduced that takes bath pieces of information into account. The criterion is efficiently optimized by a Kalman smoother. One of the major features of the method is that it is entirely unsupervised. The problem of automatically adjusting the hyperparameters that balance data-based versus prior-based information is solved by maximum likelihood (ML). The improvement is quantified in the field of meteorological radar  相似文献   
3.
We propose a method for the reconstruction of signals and images observed partially through a linear operator with a large support (e.g., a Fourier transform on a sparse set). This inverse problem is ill-posed and we resolve it by incorporating the prior information that the reconstructed objects are composed of smooth regions separated by sharp transitions. This feature is modeled by a piecewise Gaussian (PG) Markov random field (MRF), known also as the weak-string in one dimension and the weak-membrane in two dimensions. The reconstruction is defined as the maximum a posteriori estimate. The prerequisite for the use of such a prior is the success of the optimization stage. The posterior energy corresponding to a PG MRF is generally multimodal and its minimization is particularly problematic. In this context, general forms of simulated annealing rapidly become intractable when the observation operator extends over a large support. Global optimization is dealt with by extending the graduated nonconvexity (GNC) algorithm to ill-posed linear inverse problems. GNC has been pioneered by Blake and Zisserman (1987) in the field of image segmentation. The resulting algorithm is mathematically suboptimal but it is seen to be very efficient in practice. We show that the original GNC does not correctly apply to ill-posed problems. Our extension is based on a proper theoretical analysis, which provides further insight into the GNC. The performance of the proposed algorithm is corroborated by a synthetic example in the area of diffraction tomography.  相似文献   
4.
This paper provides original results on the global and local convergence properties of half-quadratic (HQ) algorithms resulting from the Geman and Yang (GY) and Geman and Reynolds (GR) primal-dual constructions. First, we show that the convergence domain of the GY algorithm can be extended with the benefit of an improved convergence rate. Second, we provide a precise comparison of the convergence rates for both algorithms. This analysis shows that the GR form does not benefit from a better convergence rate in general. Moreover, the GY iterates often take advantage of a low cost implementation. In this case, the GY form is usually faster than the GR form from the CPU time viewpoint.  相似文献   
5.
6.
The images recorded by optical telescopes are often degraded by aberrations that induce phase variations in the pupil plane. Several wavefront sensing techniques have been proposed to estimate aberrated phases. One of them is phase diversity, for which the joint least-square approach introduced by Gonsalves et al. is a reference method to estimate phase coefficients from the recorded images. In this paper, we rely on the asymptotic theory of Toeplitz matrices to show that Gonsalves' technique provides a consistent phase estimator as the size of the images grows. No comparable result is yielded by the classical joint maximum likelihood interpretation (e.g., as found in the work by Paxman et al.). Finally, our theoretical analysis is illustrated through simulated problems.  相似文献   
7.
Three-dimensional edge-preserving image enhancement for computed tomography   总被引:1,自引:0,他引:1  
Computed tomography (CT) images exhibit a variable amount of noise and blur, depending on the physical characteristics of the apparatus and the selected reconstruction method. Standard algorithms tend to favor reconstruction speed over resolution, thereby jeopardizing applications where accuracy is critical. In this paper, we propose to enhance CT images by applying half-quadratic edge-preserving image restoration (or deconvolution) to them. This approach may be used with virtually any CT scanner, provided the overall point-spread function can be roughly estimated. In image restoration, Markov random fields (MRFs) have proven to be very flexible a priori models and to yield impressive results with edge-preserving penalization, but their implementation in clinical routine is limited because they are often viewed as complex and time consuming. For these practical reasons, we focused on numerical efficiency and developed a fast implementation based on a simple three-dimensional MRF model with convex edge-preserving potentials. The resulting restoration method provides good recovery of sharp discontinuities while using convex duality principles yields fairly simple implementation of the optimization. Further reduction of the computational load can be achieved if the point-spread function is assumed to be separable. Synthetic and real data experiments indicate that the method provides significant improvements over standard reconstruction techniques and compares well with convex-potential Markov-based reconstruction, while being more flexible and numerically efficient.  相似文献   
8.
We propose a novel method called marginal estimator for estimating the aberrations and the object from phase-diversity data. The conventional estimator found in the literature concerning the technique first proposed by Gonsalves has its basis in a joint estimation of the aberrated phase and the observed object. By means of simulations, we study the behavior of the conventional estimator, which is interpretable as a joint maximum a posteriori approach, and we show in particular that it has undesirable asymptotic properties and does not permit an optimal joint estimation of the object and the aberrated phase. We propose a novel marginal estimator of the sole phase by maximum a posteriori. It is obtained by integrating the observed object out of the problem. This reduces drastically the number of unknowns, allows the unsupervised estimation of the regularization parameters, and provides better asymptotic properties. We show that the marginal method is also appropriate for the restoration of the object. This estimator is implemented and its properties are validated by simulations. The performance of the joint method and the marginal one is compared on both simulated and experimental data in the case of Earth observation. For the studied object, the comparison of the quality of the phase restoration shows that the performance of the marginal approach is better under high-noise-level conditions.  相似文献   
9.
In this paper, we propose a Bayesian sampling solution to the noisy blind separation of generalized hyperbolic signals. Generalized hyperbolic models, introduced by Barndorff-Nielsen in 1977, represent a parametric family able to cover a wide range of real signal distributions. The alternative construction of these distributions as a normal mean variance (continuous) mixture leads to an efficient implementation of the Markov chain Monte Carlo method applied to source separation. The incomplete data structure of the generalized hyperbolic distribution is indeed compatible with the hidden variable nature of the source separation problem. Both overdeterminate and underdeterminate noisy mixtures are solved by the same algorithm without a prewhitening step. Our algorithm involves hyperparameters estimation as well. Therefore, it can be used, independently, to fitting the parameters of the generalized hyperbolic distribution to real data.  相似文献   
10.
In this paper, we propose a fast numerical scheme to estimate Partition Functions (PF) of symmetric Potts fields. Our strategy is first validated on 2D two-color Potts fields and then on 3D two- and three-color Potts fields. It is then applied to the joint detection-estimation of brain activity from functional Magnetic Resonance Imaging (fMRI) data, where the goal is to automatically recover activated, deactivated and inactivated brain regions and to estimate region-dependent hemodynamic filters. For any brain region, a specific 3D Potts field indeed embodies the spatial correlation over the hidden states of the voxels by modeling whether they are activated, deactivated or inactive. To make spatial regularization adaptive, the PFs of the Potts fields over all brain regions are computed prior to the brain activity estimation. Our approach is first based upon a classical path-sampling method to approximate a small subset of reference PFs corresponding to prespecified regions. Then, we propose an extrapolation method that allows us to approximate the PFs associated to the Potts fields defined over the remaining brain regions. In comparison with preexisting methods either based on a path-sampling strategy or mean-field approximations, our contribution strongly alleviates the computational cost and makes spatially adaptive regularization of whole brain fMRI datasets feasible. It is also robust against grid inhomogeneities and efficient irrespective of the topological configurations of the brain regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号