首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
无线电   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
The performance of electronic/optoelectronic devices is governed by carrier injection through metal–semiconductor contact; therefore, it is crucial to employ low‐resistance source/drain contacts. However, unintentional introduction of extrinsic defects, such as substoichiometric oxidation states at the metal–semiconductor interface, can degrade carrier injection. In this report, controlling the unintentional extrinsic defect states in layered MoS2 is demonstrated using a two‐step chemical treatment, (NH4)2S(aq) treatment and vacuum annealing, to enhance the contact behavior of metal/MoS2 interfaces. The two‐step treatment induces changes in the contact of single layer MoS2 field effect transistors from nonlinear Schottky to Ohmic behavior, along with a reduction of contact resistance from 35.2 to 5.2 kΩ. Moreover, the enhancement of ION and electron field effect mobility of single layer MoS2 field effect transistors is nearly double for n‐branch operation. This enhanced contact behavior resulting from the two‐step treatment is likely due to the removal of oxidation defects, which can be unintentionally introduced during synthesis or fabrication processes. The removal of oxygen defects is confirmed by scanning tunneling microscopy and X‐ray photoelectron spectroscopy. This two‐step (NH4)2S(aq) chemical functionalization process provides a facile pathway to controlling the defect states in transition metal dichalcogenides (TMDs), to enhance the metal‐contact behavior of TMDs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号