首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
化学工业   5篇
无线电   1篇
一般工业技术   3篇
冶金工业   1篇
原子能技术   2篇
  2023年   4篇
  2022年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2008年   1篇
  2000年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The foundations of an experiment have been worked out with which, in principle, the spin, hyperfine constants and the isomer shift of the 14 ms fission isomer 242mAm can be measured. Such an experiment would be based on the fission fragment anisotropy signal which has actually been observed in this work after spin exchange pumping with polarized rubidium vapour in an optical buffer gas cell. A decrease of the count rate of (12±4)% has been measured at 90% with respect to the quantization axis. From this result it is concluded that the nuclear spin of the 242mAm fission isomer must be larger than 1. The low-energy fission isomers originating from the 242Pu(d, 2n)242mAm reaction have been post-accelerated with the aid of a 6 cm long 100 kV electrostatic accelerator unit in order to implant them through a 0.4 μm thick entrance window into the optical buffer gas cell. A neutralization efficiency of 13% of the americium fission isomers with an energy of about 1 MeV has been determined experimentally.  相似文献   
2.
Fibrin-based hydrogels are used as scaffolds in tissue engineering and regenerative medicine due to their biocompatibility, low cell toxicity, autologous production, and relevance for wound healing and clot formation. The availability of fibrinogen as well as its unique mechanical behavior exhibiting nonlinear elasticity makes it suitable for the fabrication of hydrogels. However, the broad application of fibrin hydrogels in biomaterials still faces challenges in terms of gel shrinkage and degradation processes. This can be addressed through the modulation of the hydrogels'r chemical and mechanical properties. In the present work, it is demonstrated that fibrin-based hydrogels with adjustable mechanical properties and controllable degradation profiles can be fabricated through the addition of fibrin-binding peptides. The cyclic peptide X2CXYYGTCLX (Tn7) is used, binding to fibrin by noncovalent supramolecular interactions. These new hydrogels exhibit no toxicity and reduced degradation rate at the same time supporting cell proliferation. Tn7 peptides significantly increase the Young's Modulus and mechanical stiffness as well as fibrin fiber thickness and inter-fiber crosslinking in hydrogels. In conclusion, hydrogels with optimized mechanical properties and controllable degradation profiles that can be advantageous for further approaches in tissue regeneration, cell-based therapies, or clinical treatment options are produced.  相似文献   
3.
Based on a novel approach that takes into account the coacervation of calcium and poly(acrylic acid) (PAA), we were able to biomimetically produce molded micropatterned parts from amorphous calcium carbonate (ACC) particles. We studied the time‐ and concentration‐dependent growth of Ca2+/PAA coacervate droplets using dynamic light scattering (DLS) and turbidity measurements. Applying these results for the generation of high amounts of unstable ACC particles, we were able to produce slurries that could be molded into micropatterned casts. The obtained slurries contained both micrometer sized ACC particles and smaller nano‐sized particles. When both types of particles were used for molding, materials with a high surface roughness could be produced, while the micropatterns of the molds could not be reproduced properly. However, by removing the bigger particles from the slurry using only the smaller, unstable, ACC particles, good reproduction of the micropatterns could be achieved, yielding smooth surfaces with a high surface area. The processing route represents a versatile platform for the bottom‐up preparation of micropatterned ceramics on the basis of calcium carbonate.  相似文献   
4.
The amine cure of cyclic carbonate blends, derived from renewable resources and carbon dioxide, in the presence of a liquid fluorohydrocarbon as physical blowing agent with no ozone depletion potential, enables the facile tailoring of flexible bio‐based nonisocyanate polyurethane (NIPU) foams. Unlike conventional PU foams, neither isocyanates nor phosgene or aromatic amines are required as intermediates in NIPU foaming. Typically, rigid cyclic carbonates such as carbonated trimethylolpropane glycidylether (TMPGC) are blended together with the corresponding flexible cyclic carbonate such as ethoxylated TMPGC (EO‐TMPGC) which lowers monomer viscosity and reactivity. This is reflected by higher pot life and gelation times for the cure with hexamethylene diamine (HMDA), improving NIPU foam processing. With increasing EO‐TMPGC content, rigid TMPGC/HMDA‐NIPU foams are rendered flexible and soft, as verified by simultaneously declining storage modulus and glass transition temperature. In this NIPU foam family, the TMPGC/EO‐TMPGC (60 wt%/40 wt%) blend cured with HMDA in the presence of Solkane 365/227 affords flexible NIPU foams exhibiting low density, very good mechanical hysteresis, and tailored hardness, meeting the demands of various applications like automotive seating. Emission tests confirm the absence of critical compounds mentioned in the global automotive declarable substance list.

  相似文献   

5.
Planar channeling has been studied for silicon single crystals at a beam energy of 855 MeV at the Mainz Microtron MAMI. Complex channeling patterns were observed from which the crystal orientation can unambiguously be determined. Photon spectra at (1 0 0), (1 1 0) and (1 1 1) planar channeling were recorded with a 10″ × 10″ NaI detector. The planar (1 1 0) channeling process has been studied as function of the crystal thickness in the range between 7.9 and 270 μm from which a dechanneling length of 18.0 μm and the thickness dependent rechanneling lengths were deduced, employing solutions of the Fokker-Planck equation. A signal derived from high energy bremsstrahlung exhibits a characteristic length of (32 ± 4) μm which is tentatively interpreted as the occupation length of the lowest quantum states in the planar potential. Prospects are discussed to exploit channeling of high energy electrons in periodically bent silicon single crystals for production of radiation in the hundreds keV to multi MeV range.  相似文献   
6.
The involvement of nitric oxide (NO) in the evoked release of noradrenaline (NA) was studied in rat hippocampal slices preincubated with [3H]NA and stimulated with 3,4-diaminopyridine (3,4-DAP; 200 microM) for 2 min. The 3,4-DAP-evoked [3H]overflow was enhanced by the NO synthase substrate L-arginine, but not by D-arginine; it was reduced by the NO synthase inhibitor NG-nitro-L-arginine, which also antagonized the effects of L-arginine. The corresponding nitro derivative of D-arginine was inactive and unable to block the effects of L-arginine. Also drugs known to produce NO in-vitro, like sodium nitroprusside (SNP), 3-morpholino-sydnonimine (SIN-1) and S-nitroso-N-acetylpenicillamine (SNAP) enhanced the 3,4-DAP-evoked NA release. The NO scavenger hemoglobin showed no significant effects when given alone, but reduced or abolished, respectively, the facilitatory effects of SNP, or SNAP and L-arginine. The cyclic GMP derivatives 8-Br-cGMP and Sp-8-p-chlorophenylthioguanosine-3',5'-cyclic monophosphorothioate (Sp-8-pCPT-cGMPS) also acted facilitatory, whereas the corresponding Rp-enantiomer of the latter compound was inactive, but antagonized the effect of Sp-8-pCPT-cGMPS. NA release evoked by 3,4-DAP (10 microM) from rat hippocampus synaptosomes was not affected by L-arginine or NG-nitro-L-arginine but slightly increased by SNAP and Sp-8-pCPT-cGMPS. Antagonists at NMDA, non-NMDA and metabotropic glutamate receptors neither affected the 3,4-DAP-evoked NA release nor the facilitatory effect of L-arginine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
7.
An international round-robin experiment has been conducted among laboratories in different countries to test the measurement and the data-analysis procedures in the International Organization for Standardization draft standard ISO/DIS 13696 for measuring total scattering from low-scatter laser optics. Ten laboratories measured total backscattering from high-reflectance mirrors, 50% beam splitters, and antireflection-coated windows. Results were sent to the Laser Zentrum Hannover, which acted as coordinator and analyzed all the backscattering data. The results showed that the procedure in the draft standard was useful for measuring and reporting backscattering for low-scatter optics. Problems encountered in the round-robin experiment included the accumulation of particles on the surfaces, particularly on the high-reflectance mirrors.  相似文献   
8.
A facile and safe ligand exchange method for readily synthesized CuInSe2 (CIS) and CuIn1‐xGaxSe2 (CIGS) nanocrystals (NCs) from oleylamine to 1‐ethyl‐5‐thiotetrazole, preserving the colloidal stability of the chalcopyrite structure, is presented. 1‐Ethyl‐5‐thiotetrazole as thermally degradable ligand is adapted for the first time for trigonal pyramidal CIS (18 nm), elongated CIS (9 nm) and CIGS NCs (6 nm). Exchanged NC solutions are processed onto gold electrodes yielding ordered thin films. These films are thermally annealed at 260 °C to completely remove 1‐ethyl‐5‐thiotetrazol leaving individual closely assembled NCs with virtually bare surfaces. The current–voltage characteristics of the NC solids are measured prior to ligand thermolysis in the dark and under illumination and after ligand thermolysis in the same manner. The conductivity of trigonal pyramidal CIS increases by four orders of magnitude (1.4 × 10?9 S cm?1 (dark) to 1.4 × 10?5 S cm?1 (illuminated)) for ligand‐free NC films. Elongated CIS NC films show a three orders of magnitude conductivity increase and CIGS NC films exhibit improved conductivity by two orders of magnitude. Conductivity enhancement thereby depends on the NC size accentuating the role of trap‐states and internal grain boundaries in ligand‐free NC solids for electrical transport. This approach for the first time offers the possibility to address chalcopyrite materials’ electrical properties in a virtually ligand‐free state.  相似文献   
9.
Recovery of mimic function after facial nerve transection is poor. The successful regrowth of regenerating motor nerve fibers to reinnervate their targets is compromised by (i) poor axonal navigation and excessive collateral branching, (ii) abnormal exchange of nerve impulses between adjacent regrowing axons, namely axonal crosstalk, and (iii) insufficient synaptic input to the axotomized facial motoneurons. As a result, axotomized motoneurons become hyperexcitable but unable to discharge. We review our findings, which have addressed the poor return of mimic function after facial nerve injuries, by testing the hypothesized detrimental component, and we propose that intensifying the trigeminal sensory input to axotomized and electrophysiologically silent facial motoneurons improves the specificity of the reinnervation of appropriate targets. We compared behavioral, functional, and morphological parameters after single reconstructive surgery of the facial nerve (or its buccal branch) with those obtained after identical facial nerve surgery, but combined with direct or indirect stimulation of the ipsilateral infraorbital nerve. We found that both methods of trigeminal sensory stimulation, i.e., stimulation of the vibrissal hairs and manual stimulation of the whisker pad, were beneficial for the outcome through improvement of the quality of target reinnervation and recovery of vibrissal motor performance.  相似文献   
10.
Stable jet electrospinning (SJES) is a special form of optical fiber generation that prevents chaotic fiber whipping typical for conventional electrospinning procedures. Incorporation of highly emissive semiconductor nanoplatelets (NPLs) in such fibers has very high potential in optical data transmission, optological circuits, fiber lasers, solar light concentrators and many other fields because NPLs exhibit strongly directed emission from their surface plane due to various in-plane transition dipole moments. However, potential orientation control of 2D-NPLs in SJES is entirely unknown as electric fields and various mechanical forces contribute in a complex manner simultaneously. Here, the observation of counter-intuitive yet very beneficial orientation of rectangular CdSe/CdS 2D-NLP in SJES perpendicular to the fiber drawing axis is reported. Scanning electron microscopy, 3D-single particle excitation polarization microscopy, 3D-photogoniometry, polarized emission spectroscopy and small angle X-ray scattering (SAXS) demonstrate aggregation free perpendicular alignment of the NPLs in poly(methyl methacrylate) (PMMA) fibers, resulting in dominant emission in directions parallel to the fiber. It is suggested that the observed vertical alignment is due to normal forces resulting from viscoelastic expansion when the polymer solution leaves the cannula (Barus effect) and that using such perpendicular nano-emitter alignment forces allows for the generation of novel materials also beyond fibers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号