首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学工业   8篇
无线电   2篇
自动化技术   1篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2006年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Heterogeneous organic-inorganic halide perovskites possess inherent non-uniformities in bandgap that are sometimes engineered and exploited on purpose, like in quasi-2D perovskites. In these systems, charge carrier and excitation energy migration to lower-bandgap sites are key processes governing luminescence. The question, which of them dominates in particular materials and under specific experimental conditions, still remains unanswered, especially when charge carriers comprise excitons. In this study transient absorption (TA) and transient photoluminescence (PL) techniques are combined to address the excited state dynamics in quasi-2D and other heterogeneous perovskite structures in broad temperature range, from room temperature down to 15 K. The data provide clear evidence that charge carrier transfer rather than energy migration dominates in heterogeneous quasi-2D perovskite films.  相似文献   
2.
Alzheimer's amyloid beta can perform a wide variety of actions that are highly concentration dependent. This viewpoint aims to provide a framework for basic considerations on what might be considered brain-relevant concentrations of the peptide. Some implications for the therapeutic implementation of the recently emerged oligomer-to-fibril strategy are discussed.  相似文献   
3.
Amyloid β is an inherently disordered peptide that can form diverse neurotoxic aggregates, and its 42-amino-acid isoform is believed to be the agent responsible for Alzheimer's disease (AD). Cellular uptake of the peptide is a pivotal step for it to be able to exert many of its toxic actions. The cellular uptake process is complex, and numerous competing internalization pathways have been proposed. To date, it remains unclear which of the uptake mechanisms are particularly important for the overall process, and improvement of this understanding is needed, so that better molecular AD therapeutics can be designed. Chirality can be used as a unique tool to study this process, because some of the proposed mechanisms are expected to proceed in stereoselective fashion, whereas others are not. To shed light on this important issue, we synthesized fluorescently labeled enantiomers of amyloid β and quantified their cellular uptake, finding that uptake occurs in stereoselective fashion, with a typical preference for the l stereoisomer of ≈5:1. This suggests that the process is predominantly receptor-mediated, with likely minor contributions of non-stereoselective mechanisms.  相似文献   
4.
Amyloid β 42 (Aβ42) is an inherently disordered peptide, whose toxic actions are believed to play important roles in the etiology of Alzheimer's disease. Four fibril structures of the peptide that display broadly similar characteristics were recently published, but a systematic comparison of these structures is lacking. In this paper, a topological framework was created to enable such understanding and produced new insights into subtle structural elements that underlie the overall structural diversity. A DFT-based analysis illuminated some of the energetic differences that arise as a consequence.  相似文献   
5.
We recently introduced amyloid β chiral inactivation (Aβ-CI) as a molecular approach that uses mirror-image peptides to chaperone the natural Aβ stereoisomer into a less toxic state. The oligomer-to-fibril conversion mechanism remains the subject of active research. Perhaps the most striking feature of Aβ-CI is the virtual obliteration of the incubation/induction phase that is so characteristic of Aβ fibril formation kinetics. This qualitative change is indicative of the distinct mechanistic pathway Aβ-CI operates through. The current working model of Aβ-CI invokes the formation of “rippled” cross-β sheets, in which alternating l - and d -peptide strands form periodic networks. However, the assumption of rippled cross-β sheets does not per se explain the dramatic changes in reaction kinetics upon mixing of Aβ enantiomers. Herein, it is shown by DFT computational methods that the individual peptide strands in rippled cross-β networks are less conformationally strained than their pleated counterparts. This means that the adoption of fibril-seeding conformations is more probable for rippled cross-β. Conformational selection is thus suggested as the mechanistic rationale for the acceleration of fibril formation upon Aβ-CI.  相似文献   
6.
Oxidised aluminum coatings are useful in various high technology applications to protect surfaces from negative environmental effects. In this study, aluminum discs and foils of industrial alloys were anodised in a sulphuric acid/oxalic acid electrolyte. Scanning electron microscopy was used to determine the pore diameter, distribution and surface porosity. The anodising procedure was adapted to produce near‐hollow templates on aluminium foil, onto which aqueous solutions of commercial chromium‐complexed anionic azodyes were dropped. Raman spectroscopy was used to detect the penetration of dye compounds based on the most intensive vibrational modes. Each dye was successfully monitored to assess its penetration rate and behaviour in the anodised coating. This method could be applied to characterise newly developed organic dyes for aluminum colouring.  相似文献   
7.
The difficulty of synthesizing and purifying the amyloid β (Aβ) peptide, combined with its high aggregation propensity and low solubility under physiological conditions, leads to a wide variety of experimental results from kinetic assays to biological activity. Thus, it becomes challenging to reproduce outcomes, and this limits our ability to rely on reported results as the foundation for new research. This article examines variability of the Aβ peptide from different sources, comparing purity, and oligomer and fibril formation propensity side by side. The results highlight the importance of performing rigorous controls so that meaningful biophysical, biochemical, and neurobiological results can be obtained to improve our understanding on Aβ.  相似文献   
8.
Charge transfer (CT) states play a key role in the functioning of organic solar cells; however, understanding the mechanism by which CT states dissociate efficiently into free charges remain a conceptual challenge. Here, the electric field dependent dynamics of charge generation in planar cyanine/fullerene photovoltaic cells is probed over a wide temperature range using time-resolved Stark effect experiments, transient absorption, and photocurrent measurements. Results indicate that dissociation of thermalized CT states is the rate-limiting step for all temperatures. The dissociation rate strongly depends on the field, but is temperature independent. The results also suggest that the yield of generated charges is temperature independent. Model electrostatic calculations illustrate that specific orientations of the cyanine crystal relative to C60 create a repulsive potential for an electron near the interface that is largely due to the quadrupole moment of the unit cell. In combination with the electron-hole coulomb attraction and the electric field-induced barrier lowering, a high-energy potential barrier forms with a narrow width of a few nanometers. It is proposed that charge separation occurs via a field-dependent electron tunneling mechanism through that barrier, which is temperature independent. The results support a thus far overlooked pathway for CT state dissociation via carrier tunneling.  相似文献   
9.
10.
We present a comparative visualization of the acoustic simulation results obtained by two different approaches that were combined into a single simulation algorithm. The first method solves the wave equation on a volume grid based on finite elements. The second method, phonon tracing, is a geometric approach that we have previously developed for interactive simulation, visualization and modeling of room acoustics. Geometric approaches of this kind are more efficient than FEM in the high and medium frequency range. For low frequencies they fail to represent diffraction, which on the other hand can be simulated properly by means of FEM. When combining both methods we need to calibrate them properly and estimate in which frequency range they provide comparable results. For this purpose we use an acoustic metric called gain and display the resulting error. Furthermore we visualize interference patterns, since these depend not only on diffraction, but also exhibit phase-dependent amplification and neutralization effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号