首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学工业   4篇
建筑科学   2篇
能源动力   1篇
轻工业   1篇
无线电   5篇
一般工业技术   1篇
自动化技术   1篇
  2021年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
A thorough understanding of the importance of aerosol coagulation and deposition relative to each other as modifiers of the particle size distribution plays an important role in the proper selection of conditions to estimate the deposition rate coefficient. In this work, a theoretical analysis was conducted for investigating the size-resolved ratio of coagulation to deposition for different types of size distributions using the Simpson integral method. The theoretical model was subsequently qualitatively validated by experiments in a completely mixed and ventilated aerosol chamber. Both experimental and theoretical studies show that the ratio of the rates of coagulation to deposition is strongly dependent on the total particle number concentration and the geometric mean diameter of the aerosol. A variation of the ratio of coagulation to deposition by several orders of magnitude for aerosols with differing size distributions was found. Thus the previously employed criterion for the negligence of coagulation based solely on the total particle number concentration was shown to be insufficient to accurately judge whether an aerosol is suited for the estimation of the deposition rate coefficient. Aerosols with wide size distributions are not recommended for use in the estimation of the deposition rate coefficient. The study provides a method to understand the role of coagulation and deposition for indoor aerosols.

Copyright 2013 American Association for Aerosol Research  相似文献   
2.
3.
Road dust forms an important component of airborne particulate matter in urban areas. In many winter cities the use of anti-skid aggregates and studded tires enhance the generation of mineral particles. The abrasion particles dominate the PM10 during springtime when the material deposited in snow is resuspended. This paper summarizes the results from three test series performed in a test facility to assess the factors that affect the generation of abrasion components of road dust. Concentrations, mass size distribution and composition of the particles were studied. Over 90% of the particles were aluminosilicates from either anti-skid or asphalt concrete aggregates. Mineral particles were observed mainly in the PM10 fraction, the fine fraction being 12% and submicron size being 6% of PM10 mass. The PM10 concentrations increased as a function of the amount of anti-skid aggregate dispersed. The use of anti-skid aggregate increased substantially the amount of PM10 originated from the asphalt concrete. It was concluded that anti-skid aggregate grains contribute to pavement wear. The particle size distribution of the anti-skid aggregates had great impact on PM10 emissions which were additionally enhanced by studded tires, modal composition, and texture of anti-skid aggregates. The results emphasize the interaction of tires, anti-skid aggregate, and asphalt concrete pavement in the production of dust emissions. They all must be taken into account when measures to reduce road dust are considered. The winter maintenance and springtime cleaning must be performed properly with methods which are efficient in reducing PM10 dust.  相似文献   
4.
The hygroscopic growth of internally mixed ammonium sulfate and carboxylic acid particles was measured as a function of relative humidity by using a tandem differential mobility analyzer (TDMA). In TDMA experiments the organic compounds with different solubilities act in several ways, ranging from the behavior of totally insoluble substance to that of soluble compounds. The hygroscopic properties for mixtures containing either adipic acid or phthalic acid together with ammonium sulfate indicate that the organic fraction of the particles behaves as an inert mass and does not contribute to water uptake. The mixtures involving malonic acid or succinic acid increased the water uptake of the ammonium sulfate part only. The results indicate that the solubility of the organic fraction in individual aerosol particles clearly influences the aerosol–water interaction.  相似文献   
5.
6.
7.
Nordic air quality co-benefits from European post-2012 climate policies   总被引:1,自引:0,他引:1  
Although climate policies target primarily CO2, they may indirectly have an impact on air pollutants and thus on air quality. Here we look specifically at the co-benefits of various European post-2012 climate policy scenarios related to air quality in the Nordic region. We analyse how caps on emissions, expansion of the European Union (EU) Emissions Trading System, carbon taxes, and Russian and non-EU Eastern Europe participation after 2012 will influence emissions, air quality, avoided abatement costs, welfare effects, the regional environment and human exposure to particulate matter in the Nordic countries. We find that stricter targets will contribute to reduced emissions of air pollutants, and benefits to ecosystems and human health, which would have required substantial abatement costs if achieved by application of ‘end-of-pipe’ measures. Due to the assumed use of the flexibility mechanisms, reductions in emissions in the Nordic countries are smaller than in other regions, but the Nordic countries benefit from reductions in emissions in nearby regions. The more sectors that are included in the emissions trading scheme, the greater the emission of air pollutants. If Eastern Europe and Russia were to abandon participation in a climate agreement, the EU and Norway would have to undertake more emission cuts at home in order to meet the same targets. This would benefit ecosystems in southern Scandinavia, but acidification would increase in the north because of increased emissions in Russia.  相似文献   
8.
Air pollution has been recognised as one of the major risk factors for the global burden of disease. In modern society the majority of the exposure occurs indoors where people spend most of their time. Indoor air quality may be improved with portable air cleaners utilizing various cleaning techniques, such as filtration, electrostatic precipitation, and ionization. The objective of this study was to quantify air cleaner particle removal by particle size resolved clean air delivery rates (CADR). This was obtained by utilizing particle concentration measurements and indoor aerosol modeling. Our test protocol was applied to five air cleaners designed for household and office use. For particles with diameters above 100 nm and at the chosen settings, the CADR was around 40 m3/h for an ion generator, around 70 m3/h for an electrostatic precipitator, and ranging from 100 to almost 300 m3/h for the three filter-based air cleaners. Similar performances were obtained for ultrafine particles, except for the ion generator that performed better in this size range.

Copyright 2014 American Association for Aerosol Research  相似文献   

9.
This study investigates commuter and driver exposure to aerosol particles in buses and trams in Helsinki, Finland. Particle number and PM2.5 concentrations were determined in the cabin and the driver's compartment. In addition, the < 2.5 µm black carbon concentration was measured in the driver's compartment and PM2.5 was collected for elemental analysis in the cabin. The measurements were repeated on two generations of buses and trams including two measurement days in each vehicle type. Fine particle number and mass concentrations in the driver's compartments were only slightly increased compared to Helsinki background air. Daily average ratios of number and mass to the background varied in range 0.8-4.3 and 1.0-2.9, respectively, both being the highest in the older bus type. However, the drivers were exposed to elevated levels of black carbon, which some studies have addressed to be strongly correlated with adverse health effects. The daily average ratio of black carbon to the background varied between 2.4 and 11.4. Additionally, the black carbon concentration had spatial variation. The drivers were exposed to higher peak concentrations of black carbon in downtown area. Particle concentrations were smaller in the driver's compartment than in the cabin. The newer technology in the newer model of the tram and bus seemed to decrease driver exposure to aerosol particles.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号