首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   31篇
电工技术   3篇
化学工业   62篇
金属工艺   2篇
机械仪表   8篇
建筑科学   11篇
能源动力   20篇
轻工业   119篇
水利工程   1篇
石油天然气   1篇
无线电   32篇
一般工业技术   78篇
冶金工业   5篇
原子能技术   7篇
自动化技术   59篇
  2024年   2篇
  2023年   6篇
  2022年   35篇
  2021年   52篇
  2020年   27篇
  2019年   30篇
  2018年   35篇
  2017年   29篇
  2016年   21篇
  2015年   10篇
  2014年   18篇
  2013年   33篇
  2012年   26篇
  2011年   23篇
  2010年   12篇
  2009年   6篇
  2008年   7篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
排序方式: 共有408条查询结果,搜索用时 0 毫秒
1.
2.
The effect of the addition of Fe2O3 and heat treatment duration on the magnetic susceptibility of vanadium borophosphate glass were studied. The magnetic susceptibility of glass samples was found to increase with increasing Fe2O3 content, which may be explained by the formation of the FeO6 group and the change of Fe2+ to Fe3+ which has higher paramagnetic properties. No detectable changes in the magnetic susceptibility with heat treatment for the samples containing 0.0, 0.5 and 1.0 mol% Fe2O3 was observed. The magnetic susceptibility for the heat treated samples containing 2.5, 5.0 and 7.5 mol% Fe2O3 decreases sharply with increasing duration of heat treatment up to 6 h and then remains almost constant. The sharp decrease in magnetic susceptibility of 2.5 mol% Fe2O3 is attributed to the increase in the number of ferrous ions. The sharp decrease for samples containing 5.0 and 7.5 mol% Fe2O3 is attributed to the increase in the number of Fe3+ in tetrahedral co-ordination. The rate of crystallization owing to the heat treatment was calculated and was found to increase with increasing iron oxide content. The geometry of crystallization was found to be in three-, two-and one-dimension(s) for samples containing 2.5, 5.0 and 7.5 mol% Fe2O3, respectively.  相似文献   
3.
The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries (ASSLBs). Because of their advantages in safety, working temperature, high energy density, and packaging, ASSLBs can develop an ideal energy storage system for modern electric vehicles (EVs). A solid electrolyte (SE) model must have an economical synthesis approach, exhibit electrochemical and chemical stability, high ionic conductivity, and low interfacial resistance. Owing to its highest conductivity of 17 mS·cm-1, and deformability, the sulfide-based Li7P3S11 solid electrolyte is a promising contender for the high-performance bulk type of ASSLBs. Herein, we present a current glimpse of the progress of synthetic procedures, structural aspects, and ionic conductivity improvement strategies. Structural elucidation and mechanistic approaches have been extensively discussed by using various characterization techniques. The chemical stability of Li7P3S11 could be enhanced via oxide doping, and hard and soft acid/base (HSAB) concepts are also discussed. The issues to be undertaken for designing the ideal solid electrolytes, interfacial challenges, and high energy density have been discoursed. This review aims to provide a bird's eye view of the recent development of Li7P3S11-based solid-state electrolyte applications and explore the strategies for designing new solid electrolytes with a target-oriented approach to enhance the efficiency of high energy density all-solid-state lithium batteries.  相似文献   
4.
5.
Silicone oils have wide range of applications in personal care products due to their unique properties of high lubricity, non‐toxicity, excessive spreading and film formation. They are usually employed in the form of emulsions due to their inert nature. Until now, different conventional emulsification techniques have been developed and applied to prepare silicone oil emulsions. The size and uniformity of emulsions showed important influence on stability of droplets, which further affect the application performance. Therefore, various strategies were developed to improve the stability as well as application performance of silicone oil emulsions. In this review, we highlight different factors influencing the stability of silicone oil emulsions and explain various strategies to overcome the stability problems. In addition, the silicone deposition on the surface of hair substrates and different approaches to increase their deposition are also discussed in detail.  相似文献   
6.
7.
Taxonomy is generated to effectively organize and access large volume of data. A taxonomy is a way of representing concepts that exist in data. It needs to continuously evolve to reflect changes in data. Existing automatic taxonomy generation techniques do not handle the evolution of data; therefore, the generated taxonomies do not truly represent the data. The evolution of data can be handled by either regenerating taxonomy from scratch, or allowing taxonomy to incrementally evolve whenever changes occur in the data. The former approach is not economical in terms of time and resources. A taxonomy incremental evolution (TIE) algorithm, as proposed, is a novel attempt to handle the data that evolve in time. It serves as a layer over an existing clustering-based taxonomy generation technique and allows an existing taxonomy to incrementally evolve. The algorithm was evaluated in research articles selected from the computing domain. It was found that the taxonomy using the algorithm that evolved with data needed considerably shorter time, and had better quality per unit time as compared to the taxonomy regenerated from scratch.  相似文献   
8.
The photocatalytic degradation of three phenolics namely phenol, 4-chlorophenol and 4-nitrophenol were carried out in aerated aqueous suspension of TiO2 irradiated by ultraviolet light. The influence of temperature at optimized pH and TiO2 concentration was studied. The degradation kinetics were somewhat accelerated by increase in temperature in the range 25–45 °C and apparent activation energy was calculated to be 9.68–21.44 kJ mol?1. Thermodynamic parameters of activation were also assessed for the degradation process. Formation of acidic species results in decrease in pH of solution. The appearance and the evolution of main intermediate species like hydroquinone, benzoquinone and catechol during the degradation process were computed by UV–vis spectral analysis.  相似文献   
9.
10.
ZnO nanorods were synthesized using a low-cost sol-gel spin coating technique. The synthesized nanorods were consisted of hexagonal phase having c-axis orientation. SEM images reflected perpendicular ZnO nanorods forming bridging network in some areas. The impact of different hydrogen concentrations on the Pd-sensitized ZnO nanorods was investigated using an impedance spectroscopy (IS). The grain boundary resistance (Rgb) significantly contributed to the sensing properties of hydrogen gas. The boundary resistance was decreased from 11.95 to 3.765 kΩ when the hydrogen concentration was increased from 40 to 360 ppm. IS gain curve showed a gain of 6.5 for 360 ppm of hydrogen at room temperature. Nyquist plot showed reduction in real part of impedance at low frequencies on exposure to different concentrations of hydrogen. Circuit equivalency was investigated by placing capacitors and resistors to identify the conduction mechanism according to complex impedance Nyquist plot. Variations in nanorod resistance and capacitance in response to the introduction of various concentrations of hydrogen gas were obtained from the alternating current impedance spectra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号