首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
无线电   4篇
一般工业技术   1篇
自动化技术   3篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
In real world, the automatic detection of liver disease is a challenging problem among medical practitioners. The intent of this work is to propose an intelligent hybrid approach for the diagnosis of hepatitis disease. The diagnosis is performed with the combination of k‐means clustering and improved ensemble‐driven learning. To avoid clinical experience and to reduce the evaluation time, ensemble learning is deployed, which constructs a set of hypotheses by using multiple learners to solve a liver disease problem. The performance analysis of the proposed integrated hybrid system is compared in terms of accuracy, true positive rate, precision, f‐measure, kappa statistic, mean absolute error, and root mean squared error. Simulation results showed that the enhanced k‐means clustering and improved ensemble learning with enhanced adaptive boosting, bagged decision tree, and J48 decision tree‐based intelligent hybrid approach achieved better prediction outcomes than other existing individual and integrated methods.  相似文献   
2.
Wireless Networks - The Internet of Things (IoTs) enables coupling of digital and physical objects using worthy communication technologies and introduces a future vision where computing systems,...  相似文献   
3.
4.
The amount of digital data in the universe is growing at an exponential rate, doubling every 2 years, and changing how we live in the world. The information storage capacity and data requirement crossed the zettabytes. With this level of bombardment of data on machine learning techniques, it becomes very difficult to carry out parallel computations. Deep learning is broadening its scope and gaining more popularity in natural language processing, feature extraction and visualization, and almost in every machine learning trend. The purpose of this study is to provide a brief review of deep learning architectures and their working. Research papers and proceedings of conferences from various authentic resources (Institute of Electrical and Electronics Engineers, Wiley, Nature, and Elsevier) are studied and analyzed. Different architectures and their effectiveness to solve domain specific problems are evaluated. Various limitations and open problems of current architectures are discussed to provide better insights to help researchers and student to resume their research on these issues. One hundred one articles were reviewed for this meta‐analysis of deep learning. From this analysis, it is concluded that advanced deep learning architectures are combinations of few conventional architectures. For example, deep belief network and convolutional neural network are used to build convolutional deep belief network, which has higher capabilities than the parent architectures. These combined architectures are more robust to explore the problem space and thus can be the answer to build a general‐purpose architecture.  相似文献   
5.
Disease recognition in plants is one of the essential problems in agricultural image processing. This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly. The framework utilizes image processing techniques such as image acquisition, image resizing, image enhancement, image segmentation, ROI extraction (region of interest), and feature extraction. An image dataset related to pomegranate leaf disease is utilized to implement the framework, divided into a training set and a test set. In the implementation process, techniques such as image enhancement and image segmentation are primarily used for identifying ROI and features. An image classification will then be implemented by combining a supervised learning model with a support vector machine. The proposed framework is developed based on MATLAB with a graphical user interface. According to the experimental results, the proposed framework can achieve 98.39% accuracy for classifying diseased and healthy leaves. Moreover, the framework can achieve an accuracy of 98.07% for classifying diseases on pomegranate leaves.  相似文献   
6.

In recent times, Chronic Kidney Disease (CKD) has affected more than 10% of the population worldwide and millions of people die every year. So, early-stage detection of CKD could be beneficial for increasing the life expectancy of suffering patients and reducing the treatment cost. It is required to build such a multimedia driven model which can help to diagnose the disease efficiently with higher accuracy before leading to worse conditions. Various techniques related to conventional machine learning models have been used by researchers in the past time without involvement of multimodal data-driven learning. This research paper offers a novel deep learning framework for chronic kidney disease classification using stacked autoencoder model utilizing multimedia data with a softmax classifier. The stacked autoencoder helps to extract the useful features from the dataset and then a softmax classifier is used to predict the final class. It has experimented on UCI dataset which contains early stages of 400 CKD patients with 25 attributes, which is a binary classification problem. Precision, recall, specificity and F1-score were used as evaluation metrics for the assessment of the proposed network. It was observed that this multimodal model outperformed the other conventional classifiers used for chronic kidney disease with a classification accuracy of 100%.

  相似文献   
7.

Breast cancer is a common cancer in women. Early detection of breast cancer in particular and cancer, in general, can considerably increase the survival rate of women, and it can be much more effective. This paper mainly focuses on the transfer learning process to detect breast cancer. Modified VGG (MVGG) is proposed and implemented on datasets of 2D and 3D images of mammograms. Experimental results showed that the proposed hybrid transfer learning model (a fusion of MVGG and ImageNet) provides an accuracy of 94.3%. On the other hand, only the proposed MVGG architecture provides an accuracy of 89.8%. So, it is precisely stated that the proposed hybrid pre-trained network outperforms other compared Convolutional Neural Networks. The proposed architecture can be considered as an effective tool for radiologists to decrease the false negative and false positive rates. Therefore, the efficiency of mammography analysis will be improved.

  相似文献   
8.
Wireless Personal Communications - Recent development of cognitive computing driven evolutionary techniques improve the overall quality of service and user experience in wireless communication...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号