首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
电工技术   1篇
石油天然气   1篇
无线电   1篇
  2021年   1篇
  2020年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Nano size nickel copper ferrite powders (NiCuFe204) and nickel copper zinc ferrite powders have been prepared by a citrate gel precursor method. The resulting powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that nickel copper ferrites and nickel copper zinc ferrites were also in the nanosaele. The NiCu ferrite powders showed extensive XRD fine broadening and sizes of crystals were calculated (from the XRD line broadening) as 26 run-44 run over the temperature range is 200-800℃. The NiCuZn ferrite powders showed XRD line broadening and sizes of of crystals were calculated 46-65 nm over 200-800℃.  相似文献   
2.
Solar photovoltaic (SPV) or battery fed multiple load LED lighting applications are gaining importance these days, which require independent voltage regulation and dimming control. Half-bridge resonant converters are mostly used due to their simple structure. In this paper, a buck-boost integrated high gain non-isolated symmetrical half-bridge series resonant converter is proposed for multiple load LED lighting applications. With the aid of integrated buck-boost operation, the output voltage can be regulated below and above the nominal input voltage effectively and can produce twice the gain as compared with classical half-bridge converters. Frequency modulation is implemented for output voltage regulation. Pulse width modulation (PWM) dimming has been adopted for illumination control. The proposed driver results in several advantages such as low cost, compact size, improved efficiency due to soft-switching, simple control, independent dimming, and effective operation for multiple loads. Thus, the proposed non-isolated driver configuration is well suited for SPV/battery fed multiple load LED lighting applications. The proposed configuration is tested with single LED load of 22 W and dual-LED loads of 22 W and 43 W. There is an excellent consensus between the simulation and the experimental outcomes.  相似文献   
3.

Fifth and future generation (5G and B5G) wireless networks aim to serve users with higher data rates and lower latency. Data traffic due to the rapid growth in communication has motivated the study of Multiple Input Multiple Output (MIMO) systems. They utilize multiple antennas in both transmitter and receiver sides. It is necessary to improve the existing technology to achieve fast and reliable communication. In this research work, a rectangular array antenna based hybrid beamforming in a massive MIMO model has been proposed to improve the spectral efficiency of the system. Thus channel capacity with small RF chains is used. To achieve the high signal strength in the main lobe, Chebyshev tapering has been used to suppress the side lobes signals. In this manner, the proposed Hybrid Beamforming for Massive Output MIMO has been realized with a small complexity and higher spectral efficiency. In this research work, the spectral efficiency of both proposed Hybrid and fully-digital beamforming with a different number of RF chains for a various number of antennas at the transmitter, the receiver side has been analyzed. From the simulation results, it has been observed that the proposed rectangular array antenna based Hybrid beamforming in a massive MIMO system reduces the computational complexity up to 99% as compared with conventional fully digital beamforming to achieve the same spectral efficiencies, which is a productive model for 5G wireless networks.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号