首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
无线电   4篇
  2008年   1篇
  2006年   2篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Empirical mode decomposition (EMD) is a relatively new, data-driven adaptive technique for analyzing multicomponent signals. Although it has many interesting features and often exhibits an ability to decompose nonlinear and nonstationary signals, it lacks a strong theoretical basis which would allow a performance analysis and hence the enhancement and optimization of the method in a systematic way. In this paper, the optimization of EMD is attempted in an alternative manner. Using specially defined multicomponent signals, the optimum outputs can be known in advance and used in the optimization of the EMD-free parameters within a genetic algorithm framework. The contributions of this paper are two-fold. First, the optimization of both the interpolation points and the piecewise interpolating polynomials for the formation of the upper and lower envelopes of the signal reveal important characteristics of the method which where previously hidden. Second, basic directions for the estimates of the optimized parameters are developed, leading to significant performance improvements.  相似文献   
2.
Recently, a novel MLSE equalizer was reported, that does not require the explicit estimation of the channel impulse response. Instead, it utilizes, in an efficient manner, the estimates of the centers of the clusters formed by the received observations. In this paper, a novel cluster tracking scheme is presented, which extends the application of this equalizer in time-varying transmission environments. The proposed algorithm is shown to be equivalent in tracking performance with the classic LMS-based MLSE equalizer, yet much simpler computationally. This is a consequence of the fact that the new method allows for an efficient exploitation of the symmetries underlying the signaling scheme.  相似文献   
3.
Recently, a novel maximum-likelihood sequence estimation (MLSE) equalizer was reported that avoids the explicit estimation of the channel impulse response. Instead, it is based on the fact that the (noise-free) channel outputs, needed by the Viterbi algorithm, coincide with the points around which the received (noisy) samples are clustered and can thus be estimated directly with the aid of a supervised clustering method. Moreover, this is achieved in a computationally efficient manner that exploits the channel linearity and the symmetries underlying the transmitted signal constellation. The resulting computational savings over the conventional MLSE equalization scheme are significant even in the case of relatively short channels where MLSE equalization is practically applicable. It was demonstrated, via simulations, that the performance of this algorithm is close to that using a least-squares (LS) channel estimator, although its computational complexity is even lower than that of the least-mean squares (LMS)-trained MLSE equalizer. This paper investigates the relationship of the center estimation (CE) part of the proposed equalizer with the LS method. It is proved that, when using LS with the training sequence employed by CE, the two methods lead to the same solution. However, when LS is trained with random data, it outperforms CE, with the performance difference being proportional to the channel length. A modified CE method, called MCE, is thus developed, that attains the performance of LS with perfectly random data, while still being much simpler computationally than classical LS estimation. Through the results of this paper, CE is confirmed as a methodology that combines high performance, simplicity, and low computational cost, as required in a practical equalization task. An alternative, algebraic viewpoint on the CE method is also provided.  相似文献   
4.
In this paper, a novel sequence equalizer, which belongs to the family of cluster-based sequence equalizers, is presented. The proposed algorithm achieves the maximum likelihood solution to the equalization problem in a fraction of computational load, compared with the classic maximum likelihood sequence estimation (MLSE) equalizers. The new method does not require the estimation of the channel impulse response. Instead, it utilizes the estimates of the cluster centers formed by the received observations. Furthermore, a new cluster center estimation scheme, which exploits the intrinsic dependencies among the cluster centers, is proposed. The new center estimation method exhibits enhanced performance with respect to convergence speed, compared with an LMS-based channel estimator. Moreover, this gain in performance is obtained at substantially lower computational load. The method is also extended in order to cope with nonlinear channels. The performance of the new equalizer is tested with several simulation examples, using both the quadrature phase shift keying (QPSK) and the 16-quadrature amplitude modulated (QAM) signaling schemes for linear and nonlinear communication channels.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号