首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
电工技术   2篇
化学工业   9篇
机械仪表   7篇
轻工业   7篇
无线电   20篇
一般工业技术   4篇
冶金工业   3篇
自动化技术   2篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2006年   2篇
  2002年   3篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1984年   2篇
  1977年   2篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
We have fabricated actively mode-locked lasers integrated with electroabsorption modulators and chirped gratings. A chirped grating with a large chirp rate of 1.45 Å/μm can be realized by using multiphase-shifted patterns. Short pulses of 4-6 ps were generated over a wide frequency range from 18.9-19.8 GHz. We observed jumps in the wavelength during detuning. These jumps arise from multiple lobes in the reflectivity spectrum. It is found that the wavelength jumps cause increases in the intensity noise. We showed that by reducing the grating length from 150 to 100 μm the sidelobes were suppressed and the detuning frequency range of over 1% could be realized. A smaller pulsewidth was obtained for the negatively-chirped gratings when compared to the positively chirped gratings  相似文献   
2.
This paper describes picosecond pulse generation at 20 Gb/s by monolithic mode-locked lasers integrated with electroabsorption modulators and distributed Bragg reflectors. The electroabsorption modulator using strained-InGaAsP multiquantum wells acts as a pulse shortening gate when a sinusoidal voltage is driven at a large reverse bias voltage. To obtain transform-limited picosecond pulses, the required spectral bandwidth of the distributed Bragg reflector is estimated. Pulse generation around 4 ps with a time-bandwidth product of 0.5 has been performed at a repetition rate of 20 GHz. Driving conditions of the modulator, such as bias voltage and modulation frequency, are investigated. It is shown that an increase in the intensity noise is the main factor limiting performance  相似文献   
3.
High-speed phase modulation (in the frequency bandwidth of 20 GHz, the highest yet reported for multiple quantum well (MQW) phase modulators) for waveguided InGaAlAs/InAlAs MQW optical modulators is reported. The modulator successfully operates at a long wavelength of 1-55 μm with a low required voltage for phase shift (Vπ=3.8 V), small intensity modulation depth below 1.5 dB, and without any modulation bandwidth degradation up to 20 GHz under high input optical power of 0 dBm in single-mode fiber  相似文献   
4.
High-speed modulation over 22 GHz for waveguided InGaAlAs/InAlAs multiple quantum well (MQW) optical modulators is described. A large on/off ratio of over 25 dB is demonstrated with a low-drive voltage (6 V) operating in the 1.55-μm wavelength region. The design and characteristics of MQW p-i-n modulators are discussed. The causes of large-insertion loss and the required drive voltage bandwidth figure of merit for the MQW modulator are discussed. The frequency response measurements show that the response speed is limited by the RC time constant of the device. This suggests that the speed can be further enhanced by decreasing the size and capacitance of the device  相似文献   
5.
The spectral linewidth enhancement factor and frequency responses of electro-absorption-type optical-intensity modulators, especially InGaAs/InAlAs MQW modulators, are described. A method of exactly estimating the value of the α factor is presented under the nonlinearity of extinction-ratio characteristics. For measuring the frequency response of modulators, the sideband strength of the modulated output light with an optical spectrum analyzer, is analytically compared with the microwave power of photodiode direct detection with an electrical spectrum analyzer  相似文献   
6.
Modulated light spectra were measured in long-wavelength InGaAs-InAlAs multiple-quantum-well intensity modulators under 30-GHz large-signal modulations. The linewidth broadening factor alpha is determined from the relation between the intensity modulation index and the sideband strength relative to the carrier. The minimum alpha value is estimated to be 0.70 at 1.54 mu m, which is almost the same as the lowest value so far reported in a bulk Franz-Keldysh modulator. This is significantly lower than what is obtained from direct-intensity modulation of injection lasers, making this a useful device for application to high-bit-rate long-haul optical communication systems.<>  相似文献   
7.
An InGaArInAlAs MQW modulator with the low voltage of 1.5 V for 10 dB extinction ratio and 16 GHz bandwidth has been developed. This ultrahigh-speed modulator enables the modulator driver to be eliminated from the transmitter. 100 km transmission experiments have been carried out using either a 1 V peak to peak output monolithic-IC-driven modulator at 15 Gbit/s or a 2 V peak to peak output multiplexer-driven modulator at 20 Gbit/s. This is the first report on multigigabit operation of MQW modulators to the authors' knowledge.<>  相似文献   
8.
Quaternary AlGaInAs quantum-well optical modulators operating at 1.55 μm are introduced and demonstrated for the first time. An electron-to-heavy-hole exciton absorption peak shift of over 600 Å is observed for a bias voltage of 6 V. An extinction ratio of 19 dB and high-speed operation over 4 GHz is obtained for this optical modulator  相似文献   
9.
A deconvolution processing of high-resolution high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images, combined with maximum entropy method, is applied to two experimental [0 11]-Si images; one having unresolved dumbbells and the other having resolved dumbbells and artificial bright spots. The deconvoluted images for these images show bright spots corresponding to the projected atomic columns and no artificial bright spots. Thus, the deconvolution processing provides almost a real projected atomic structure by eliminating effects of the probe function from HAADF STEM images.  相似文献   
10.
Malate is an important taste component of sake (a Japanese alcoholic beverage) that is produced by the yeast Saccharomyces cerevisiae during alcoholic fermentation. A variety of methods for generating high malate‐producing yeast strains have been developed to date. We recently reported that a high malate‐producing strain was isolated as a mutant sensitive to dimethyl succinate (DMS), and that a mutation in the vacuolar import and degradation protein (VID) 24 gene was responsible for high malate productivity and DMS sensitivity. In this work, the relationships between heterozygous and homozygous mutants of VID24 and malate productivity in diploid sake yeast were examined and a method was developed for breeding a higher malate‐producing strain. First a diploid yeast was generated with a homozygous VID24 mutation by genetic engineering. The homozygous integrants produced more malate during sake brewing and grew more slowly in DMS medium than wild‐type and heterozygous integrants. Thus, the genotype of the VID24 mutation influenced the level of malate production and sensitivity to DMS in diploid yeast. Then a homozygous mutant from a heterozygous mutant was obtained without genetic engineering by ultraviolet irradiation and culturing in DMS with nystatin enrichment. The non‐genetically modified sake yeast with a homozygous VID24 mutation exhibited a higher level of malate productivity than the parent heterozygous mutant strain. These findings provide a basis for controlling malate production in yeast, and thereby regulating malate levels in sake. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号