首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
无线电   4篇
  2024年   2篇
  2018年   1篇
  2017年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
This work investigates the radiation resistance of high-performance multi-component perovskite solar cells (PSCs) for the first time under extreme short-pulse proton irradiation conditions. The devices are subjected to high-intensity 170 keV pulsed (150 ns) proton irradiation, with a fluence of up to 1013 p cm−2, corresponding to ≈30 years of operation at low Earth orbit. A complex material characterization of the perovskite active layer and device physics analysis of the PSCs before and after short-pulse proton irradiation is conducted. The obtained results indicate that the photovoltaic performance of the solar cells experiences a slight deterioration up to 20 % and 50 % following the low 2 × 1012 p cm−2 and high 1 × 1013 p cm−2 proton fluences, respectively, due to increased non-radiative recombination losses. The findings reveal that multi-component PSCs are immune even to extreme high-intense short-pulse proton irradiation, which exceeds harsh space conditions, including intense coronal ejection events usually associated with solar flares.  相似文献   
2.
Solovan  M. M.  Brus  V. V.  Mostovyi  A. I.  Maryanchuk  P. D.  Orletskyi  I. G.  Kovaliuk  T. T.  Abashin  S. L. 《Semiconductors》2017,51(4):542-548

Photosensitive nanostructured heterojunctions n-TiN/p-Si were fabricated by means of titanium nitride thin films deposition (n-type conductivity) by the DC reactive magnetron sputtering onto nano structured single crystal substrates of p-type Si (100). The temperature dependencies of the height of the potential barrier and series resistance of the n-TiN/p-Si heterojunctions were investigated. The dominant current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse bias. The heterojunctions under investigation generate open-circuit voltage V oc = 0.8 V, short-circuit current I sc = 3.72 mA/cm2 and fill factor FF = 0.5 under illumination of 100 mW/cm2.

  相似文献   
3.
4.
Graphite/p-SiC Schottky diodes are fabricated using the recently suggested technique of transferring drawn graphite films onto p-SiC single-crystal substrates. The current–voltage and capacitance–voltage characteristics are measured at different temperatures and at different frequencies of a small-signal AC signal, respectively. The temperature dependences of the potential-barrier height and of the series resistance of the graphite/p-SiC junctions are measured and analyzed. The dominant mechanisms of the charge–carrier transport through the diodes are determined. It is shown that the dominant mechanisms of the transport of charge carriers through the graphite/p-Si Schottky diodes at a forward bias are multi-step tunneling recombination and tunneling described by the Newman formula (at high bias voltages). At reverse biases, the dominant mechanisms of charge transport are the Frenkel–Poole emission and tunneling. It is shown that the graphite/p-SiC Schottky diodes can be used as detectors of ultraviolet radiation since they have the open-circuit voltage Voc = 1.84 V and the short-circuit current density Isc = 2.9 mA/cm2 under illumination from a DRL 250-3 mercury–quartz lamp located 3 cm from the sample.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号