首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
无线电   3篇
自动化技术   1篇
  2016年   1篇
  2009年   1篇
  2007年   1篇
  2002年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
In image processing and computer vision, the denoising process is an important step before several processing tasks. This paper presents a new adaptive noise-reducing anisotropic diffusion (ANRAD) method to improve the image quality, which can be considered as a modified version of a speckle-reducing anisotropic diffusion (SRAD) filter. The SRAD works very well for monochrome images with speckle noise. However, in the case of images corrupted with other types of noise, it cannot provide optimal image quality due to the inaccurate noise model. The ANRAD method introduces an automatic RGB noise model estimator in a partial differential equation system similar to the SRAD diffusion, which estimates at each iteration an upper bound of the real noise level function by fitting a lower envelope to the standard deviations of pre-segment image variances. Compared to the conventional SRAD filter, the proposed filter has the advantage of being adapted to the color noise produced by today’s CCD digital camera. The simulation results show that the ANRAD filter can reduce the noise while preserving image edges and fine details very well. Also, it is favorably compared to the fast non-local means filter, showing an improvement in the quality of the restored image. A quantitative comparison measure is given by the parameters like the mean structural similarity index and the peak signal-to-noise ratio.  相似文献   
2.
We present a new approach to anisotropic diffusion based on a multidirectional diffusion flux. The diffusion flux is decomposed in an orthogonal basis, effectively enabling enhancement of contours as well as diffusion along the contours. To this end, we have selected a three-dimensional basis that depicts the directions of principal curvature and has an interesting interpretation in the context of the vessels. The diffusion function associated to each vector of the basis depends on the first-order derivative of the intensity in this direction, instead of the traditional norm of the smoothed gradient. Accordingly, we present the results of a restoration of computed tomography data of the liver.  相似文献   
3.
Oriented speckle reducing anisotropic diffusion.   总被引:2,自引:0,他引:2  
Ultrasound imaging systems provide the clinician with noninvasive, low-cost, and real-time images that can help them in diagnosis, planning, and therapy. However, although the human eye is able to derive the meaningful information from these images, automatic processing is very difficult due to noise and artifacts present in the image. The speckle reducing anisotropic diffusion filter was recently proposed to adapt the anisotropic diffusion filter to the characteristics of the speckle noise present in the ultrasound images and to facilitate automatic processing of images. We analyze the properties of the numerical scheme associated with this filter, using a semi-explicit scheme. We then extend the filter to a matrix anisotropic diffusion, allowing different levels of filtering across the image contours and in the principal curvature directions. We also show a relation between the local directional variance of the image intensity and the local geometry of the image, which can justify the choice of the gradient and the principal curvature directions as a basis for the diffusion matrix. Finally, different filtering techniques are compared on a 2-D synthetic image with two different levels of multiplicative noise and on a 3-D synthetic image of a Y-junction, and the new filter is applied on a 3-D real ultrasound image of the liver.  相似文献   
4.
Noise-Driven Anisotropic Diffusion Filtering of MRI   总被引:1,自引:0,他引:1  
A new filtering method to remove Rician noise from magnetic resonance images is presented. This filter relies on a robust estimation of the standard deviation of the noise and combines local linear minimum mean square error filters and partial differential equations for MRI, as the speckle reducing anisotropic diffusion did for ultrasound images. The parameters of the filter are automatically chosen from the estimated noise. This property improves the convergence rate of the diffusion while preserving contours, leading to more robust and intuitive filtering. The partial derivative equation of the filter is extended to a new matrix diffusion filter which allows a coherent diffusion based on the local structure of the image and on the corresponding oriented local standard deviations. This new filter combines volumetric, planar, and linear components of the local image structure. The numerical scheme is explained and visual and quantitative results on simulated and real data sets are presented. In the experiments, the new filter leads to the best results.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号