首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
电工技术   3篇
无线电   3篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
This paper describes the outcome of discussions held during the Third International BCI Meeting at a workshop charged with reviewing and evaluating the current state of and issues relevant to brain-computer interface (BCI) feature extraction and translation. The issues discussed include a taxonomy of methods and applications, time-frequency spatial analysis, optimization schemes, the role of insight in analysis, adaptation, and methods for quantifying BCI feedback.  相似文献   
2.
A brain-computer interface (BCI) is a system that provides an alternate nonmuscular communication/control channel for individuals with severe neuromuscular disabilities. With proper training, individuals can learn to modulate the amplitude of specific electroencephalographic (EEG) components (e.g., the 8-12 Hz mu rhythm and 18-26 Hz beta rhythm) over the sensorimotor cortex and use them to control a cursor on a computer screen. Conventional spectral techniques for monitoring the continuous amplitude fluctuations fail to capture essential amplitude/phase relationships of the mu and beta rhythms in a compact fashion and, therefore, are suboptimal. By extracting the characteristic mu rhythm for a user, the exact morphology can be characterized and exploited as a matched filter. A simple, parameterized model for the characteristic mu rhythm is proposed and its effectiveness as a matched filter is examined online for a one-dimensional cursor control task. The results suggest that amplitude/phase coupling exists between the mu and beta bands during event-related desynchronization, and that an appropriate matched filter can provide improved performance.  相似文献   
3.
A brain-computer interface (BCI) is a system that provides an alternate nonmuscular communication/control channel for individuals with severe neuromuscular disabilities. With proper training, individuals can learn to modulate the amplitude of specific electroencephalographic (EEG) components (e.g., the 8-12 Hz mu rhythm and 18-26 Hz beta rhythm) over the sensorimotor cortex and use them to control a cursor on a computer screen. Conventional spectral techniques for monitoring the continuous amplitude fluctuations fail to capture essential amplitude/phase relationships of the mu and beta rhythms in a compact fashion and, therefore, are suboptimal. By extracting the characteristic mu rhythm for a user, the exact morphology can be characterized and exploited as a matched filter. A simple, parameterized model for the characteristic mu rhythm is proposed and its effectiveness as a matched filter is examined online for a one-dimensional cursor control task. The results suggest that amplitude/phase coupling exists between the mu and beta bands during event-related desynchronization, and that an appropriate matched filter can provide improved performance  相似文献   
4.
A brain-computer interface (BCI) is a system that allows its users to control external devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. Success requires the effective interaction of two adaptive controllers: the user's brain, which produces brain activity that encodes intent, and the BCI system, which translates that activity into device control commands. In order to facilitate this interaction, many laboratories are exploring a variety of signal analysis techniques to improve the adaptation of the BCI system to the user. In the literature, many machine learning and pattern classification algorithms have been reported to give impressive results when applied to BCI data in offline analyses. However, it is more difficult to evaluate their relative value for actual online use. BCI data competitions have been organized to provide objective formal evaluations of alternative methods. Prompted by the great interest in the first two BCI Competitions, we organized the third BCI Competition to address several of the most difficult and important analysis problems in BCI research. The paper describes the data sets that were provided to the competitors and gives an overview of the results.  相似文献   
5.
The Wadsworth BCI Research and Development Program: at home with BCI.   总被引:1,自引:0,他引:1  
The ultimate goal of brain-computer interface (BCI) technology is to provide communication and control capacities to people with severe motor disabilities. BCI research at the Wadsworth Center focuses primarily on noninvasive, electroencephalography (EEG)-based BCI methods. We have shown that people, including those with severe motor disabilities, can learn to use sensorimotor rhythms (SMRs) to move a cursor rapidly and accurately in one or two dimensions. We have also improved P300-based BCI operation. We are now translating this laboratory-proven BCI technology into a system that can be used by severely disabled people in their homes with minimal ongoing technical oversight. To accomplish this, we have: improved our general-purpose BCI software (BCI2000); improved online adaptation and feature translation for SMR-based BCI operation; improved the accuracy and bandwidth of P300-based BCI operation; reduced the complexity of system hardware and software and begun to evaluate home system use in appropriate users. These developments have resulted in prototype systems for every day use in people's homes.  相似文献   
6.
The theory and design of linear adaptive filters based on FIR filter structures is well developed and widely applied in practice. However, the same is not true for more general classes of adaptive systems such as linear infinite impulse response adaptive filters (MR) and nonlinear adaptive systems. This situation results because both linear IIR structures and nonlinear structures tend to produce multi-modal error surfaces for which stochastic gradient optimization strategies may fail to reach the global minimum. After briefly discussing the state of the art in linear adaptive filtering, the attention of this paper is turned to MR and nonlinear adaptive systems for potential use in echo cancellation, channel equalization, acoustic channel modeling, nonlinear prediction, and nonlinear system identification. Structured stochastic optimization algorithms that are effective on multimodal error surfaces are then introduced, with particular attention to the particle swarm optimization (PSO) technique. The PSO algorithm is demonstrated on some representative IIR and nonlinear filter structures, and both performance and computational complexity are analyzed for these types of nonlinear systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号