首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
无线电   3篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
This paper studies the capacity of a n node static wireless network with c channels and m radio interfaces per node under the protocol model of interference. In their seminal work, Gupta and Kumar have determined the capacity of a single channel network (c=1, m=1). Their results are also applicable to multichannel networks provided each node has one interface per channel (m=c) . However, in practice, it is often infeasible to equip each node with one interface per channel. Motivated by this observation, we establish the capacity of general multichannel networks (m les c). Equipping each node with fewer interfaces than channels in general reduces network capacity. However, we show that one important exception is a random network with up to O(logn) channels, where there is no capacity degradation even if each node has only one interface. Our initial analysis assumes that the interfaces are capable of switching channels instantaneously, but we later extend our analysis to account for interface switching delays seen in practice. Furthermore, some multichannel protocols proposed so far rarely require interfaces to switch, and therefore, we briefly study the capacity with fixed interfaces as well.  相似文献   
2.
Selfish MAC layer misbehavior in wireless networks   总被引:4,自引:0,他引:4  
Wireless medium access control (MAC) protocols such as IEEE 802.11 use distributed contention resolution mechanisms for sharing the wireless channel. In this environment, selfish hosts that fail to adhere to the MAC protocol may obtain an unfair throughput share. For example, IEEE 802.11 requires hosts competing for access to the channel to wait for a "backoff" interval, randomly selected from a specified range/before initiating a transmission. Selfish hosts may wait for smaller backoff intervals than well-behaved hosts, thereby obtaining an unfair advantage. We present modifications to the IEEE 802.11 protocol to simplify detection of such selfish hosts and analyze the optimality of the chosen strategy. We also present a penalty scheme for punishing selfish misbehavior. We develop two misbehavior models to capture the behavior of misbehaving hosts. Simulation results under these misbehavior models indicate that our detection and penalty schemes are successful in handling MAC layer misbehavior.  相似文献   
3.
Multichannel mesh networks: challenges and protocols   总被引:2,自引:0,他引:2  
Supporting high throughput is an important challenge in multihop mesh networks. Popular wireless LAN standards, such as IEEE 802.11, provision for multiple channels. In this article, we consider the use of multiple wireless channels to improve network throughput. Commercially available wireless network interfaces can typically operate over only one channel at a time. Due to cost and complexity constraints, the total number of interfaces at each host is expected to be smaller than the total channels available in the network. Under this scenario, several challenges need to be addressed before all the available channels can be fully utilized. In this article, we highlight the main challenges, and present two link-layer protocols for utilizing multiple channels. We also present a new abstraction layer that simplifies the implementation of new multichannel protocols in existing operating systems. This article demonstrates the feasibility of utilizing multiple channels, even if each host has fewer interfaces than the number of available channels.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号