首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
无线电   1篇
自动化技术   2篇
  2020年   2篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.

Xylem is a vascular tissue that conducts sap (water and dissolved minerals) from the roots to the rest of the plant while providing physical support and resources. Sap is conducted within dead hollow cells (called vessels in flowering plants) arranged to form long pipes. Once formed, vessels do not change their structure and last from years to millennia. Vessels’ configuration (size, abundance, and spatial pattern) constitutes a record of the plant–environment relationship, and therefore, a tool for monitoring responses at the plant and ecosystem level. This information can be extracted through quantitative anatomy; however, the effort to identify and measure hundreds of thousands of conductive cells is an inconvenience to the progress needed to have solid assessments of the anatomical–environment relationship. In this paper, we propose an automatic methodology based on convolutional neural networks to segment xylem vessels. It includes a post-processing stage based on the use of redundant information to improve the performance of the outcome and make it useful in different sample configurations. Three different neural networks were tested obtaining similar results (pixel accuracy about 90%), which indicates that the methodology can be effectively used for segmentation of xylem vessels into images with non-homogeneous variations of illumination. The development of accurate automatic tools using CNNs would reduce the entry barriers associated with quantitative xylem anatomy expanding the use of this technique by the scientific community.

  相似文献   
2.
Multidimensional Systems and Signal Processing - The applications of object-based image analysis (OBIA) in remote sensing studies have received a considerable amount of attention over the recent...  相似文献   
3.
Over recent decades, remote sensing has emerged as an effective tool for improving agriculture productivity. In particular, many works have dealt with the problem of identifying characteristics or phenomena of crops and orchards on different scales using remote sensed images. Since the natural processes are scale dependent and most of them are hierarchically structured, the determination of optimal study scales is mandatory in understanding these processes and their interactions. The concept of multi-scale/multi-resolution inherent to OBIA methodologies allows the scale problem to be dealt with. But for that multi-scale and hierarchical segmentation algorithms are required. The question that remains unsolved is to determine the suitable scale segmentation that allows different objects and phenomena to be characterized in a single image. In this work, an adaptation of the Simple Linear Iterative Clustering (SLIC) algorithm to perform a multi-scale hierarchical segmentation of satellite images is proposed. The selection of the optimal multi-scale segmentation for different regions of the image is carried out by evaluating the intra-variability and inter-heterogeneity of the regions obtained on each scale with respect to the parent-regions defined by the coarsest scale. To achieve this goal, an objective function, that combines weighted variance and the global Moran index, has been used. Two different kinds of experiment have been carried out, generating the number of regions on each scale through linear and dyadic approaches. This methodology has allowed, on the one hand, the detection of objects on different scales and, on the other hand, to represent them all in a single image. Altogether, the procedure provides the user with a better comprehension of the land cover, the objects on it and the phenomena occurring.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号