首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
金属工艺   1篇
无线电   2篇
一般工业技术   1篇
  2023年   1篇
  2018年   1篇
  2011年   1篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
In this study, a series of donor–acceptor–donor (D-A-D) type small molecules based on the fluorene and diphenylethenyl enamine units, which are distinguished by different acceptors, as holetransporting materials (HTMs) for perovskite solar cells is presented. The incorporation of the malononitrile acceptor units is found to be beneficial for not only carrier transportation but also defects passivation via Pb–N interactions. The highest power conversion efficiency of over 22% is achieved on cells based on V1359, which is higher than that of spiro-OMeTAD under identical conditions. This st shows that HTMs prepared via simplified synthetic routes are not only a low-cost alternative to spiro-OMeTAD but also outperform in efficiency and stability state-of-art materials obtained via expensive cross-coupling methods.  相似文献   
2.
A novel electrochemical technique for the general assay of lipase activity is described. The method utilizes a solid-supported lipase substrate, which is formed by dripping and drying a small amount of an ethanol solution of 9-(5'-ferrocenylpentanoyloxy)nonyl disulfide (FPONDS) onto gold modified by a hexanethiol self-assembled monolayer. The redox ferrocene group of FPONDS generates the electrochemical signal, the intensity of which is proportional to the number of FPONDS molecules at the interface. Electrochemical and surface-enhanced infrared absorption spectroscopic data, as well as control experiments with an engineered, deactivated mutant enzyme, demonstrate that the wild-type lipase from Thermomyces lanuginosus is capable of cleaving the ester bonds of FPONDS molecules via an enzymatic hydrolysis mechanism, which includes the adsorption of the lipase onto the substrate surface. The hydrolysis liberates the ferrocene groups from the interface triggering a decay of the electrochemical redox signal. The rate of the electrochemical signal decrease is proportional to the lipase activity/concentration. These data suggest a general method for the direct measure of enzymatic activity of lipases.  相似文献   
3.
Synthesis and properties of the well-defined 3,6-dibromocarbazolyl-containing molecular glasses are reported. They were prepared by the nucleophilic opening of the oxirane ring of 1,3-di(3,6-dibromocarbazol-9-yl)-2-propanol glycidyl ether with aniline, 4-fluoro-, 4-bromoanilines, 2,5-dimercapto-1,3,4-thiadiazole or glycidyl ether of 1,3-di(carbazol-9-yl)-2-propanol with 4,4′-thiobisbenzenethiol and 1,9-nonanedithiol followed by bromination. The obtained materials were examined by various techniques including differential scanning calorimetry, NMR, MS, UV, PL spectrometry. The electrophotographic parameters of the molecular glasses doped with difluoroboron-1,3-bis(4-metoxyphenyl)-1,3-propanedionate have been studied. The electrochemical properties and ionization potentials, measured by electron photoemission method in air, were investigated.  相似文献   
4.
A series of new branched hole transporting materials (HTMs) containing two diphenylamine‐substituted carbazole fragments linked by a nonconjugated methylenebenzene unit is synthesized and tested in perovskite solar cells. Synthesis of the investigated materials is performed by a simple two‐step synthetic procedure providing a target product in high yield. The isolated materials demonstrate good thermal stability and majority of the investigated compounds exist in an amorphous state, which is advantageous as there is no risk of crystallization directly in the film. The highest charge drift mobility of µ0 = 4 × 10?4 cm2 V?1 s?1, measured at weak electric fields, is by ca. one order of magnitude higher than that of Spiro‐OMeTAD under identical conditions. From the perovskite solar cell testing results, it can be seen that performance of two new HTMs ( V885 and V911 ) is on a par with Spiro‐OMeTAD. Due to the ease of synthesis, good thermal, optical and photophysical properties, this type of molecules hold great promise for practical application in commercial perovskite solar cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号