首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
轻工业   1篇
无线电   1篇
自动化技术   4篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
This paper is focused on the development and validation of an error kinematic model of a mini spherical robot, aimed at its kinematic calibration. The robot is actually a spatial five-bar linkage, provided with two rotational degrees of freedom. A non-overconstrained kinematics is assumed for the robot in order to provide a simple mathematical model and allow a sensitivity analysis of all the involved geometric parameters. A simplified version of the model is proposed. It differs only for the degree of approximation. A comparison between full and reduced models is presented by means of numerical simulations, analyzing their behavior in a significant region of the robot workspace. In order to validate both of them a robot calibration is carried out on a physical prototype of the robot using a vision system, namely a fixed camera in a eye-to-hand configuration. An iterative algorithm aimed at the experimental identification of the geometric data of the robot is used. Some experimental results show the effectiveness of the study.  相似文献   
2.
The article presents the inverse dynamics model of a novel translating parallel machine and proposes the structure of a force controller for the execution of tasks characterised by interaction with the environment. The task space model of machine’s dynamics is obtained in an efficient and compact form by means of the principle of virtual work. A virtual prototyping environment has been set up to test by computer simulation the potential of such kinematic architecture: the resulting dynamics is rather poor, mainly due to the high moving masses, but it is shown that hybrid position/force control schemes should be able to provide good performances, including the case of rather difficult operations, such as the peg-in-hole assembly.  相似文献   
3.
The following paper presents the design and fabrication of an ostraciiform swimming robot and its navigation control and guidance system. Compared to other biomimetic vehicles, the chosen architecture has a lower propulsive efficiency but is easier to waterproof and capable to withstand greater pressures. To generate the alternating motion of the robot bio-inspired thruster, namely a plane fin, a transmission system was designed to replace the direct drive widely adopted in underwater biomimetic vehicles. The mechanical efficiency of two alternative mechanisms capable to actuate the fin were computed according to a preliminary sizing of the robot and its targeted swimming performances. Therefore, the more suitable solution was manufactured and installed aboard. At the same time, a proper navigation, guidance and control architecture (NGC) was designed and then integrated in the robot main controller. The proposed solution allows the vehicle to perform different missions autonomously once their profiles are received from the base station. Preliminary tests results and future works are discussed in the final conclusions.  相似文献   
4.
The paper proposes the mechanical design of a lockable spherical joint, which is designed to be manually or automatically configured in different kinematic solutions. The device is conceived for being used as a conventional spherical joint or converted in a universal joint, or still downgraded to a revolute pair. Therefore different configurations can be chosen according to user needs. In particular, two of the three axes of revolution, arranged in the typical roll-pitch-roll sequence of robot spherical wrists, can be locked alternately in order to provide two differently arranged universal joints. It can be demonstrated that such behavior allows to activate different mobilities of a class of reconfigurable parallel kinematics manipulators and for this task the device has been dimensioned. The transition between such mobilities occurs exploiting the concept of over-constrained kinematics, which is realized by the lockable joint during the switching phase in order to avoid an instantaneous mobility of the robot.  相似文献   
5.
Given the prominence and the growing importance of mycotoxins in human and animal health, and particularly of vomitoxin and zearalenone in people who use wheat and wheat products as their staple diet, we investigated two different types of wheat milling. Wheat produced according to good manufacturing practice related to mycotoxin risks (from sowing to harvesting) was used to compare the vomitoxin and zearalenone content of soft wheat flour, following the use of two different types of milling, traditional milling with a stone mill and modern milling with a roller mill. Moreover, the vomitoxin and zearalenone content was also evaluated in commercial stone-milled and roller-milled flours. Our results show that stone milling reduced vomitoxin and zearalenone content in flours, compared with the use of the roller-mill system.  相似文献   
6.
The present paper addresses the modelling and the experimental identification of the static behaviour of the Tricept robot, a hybrid parallel kinematic machine. Mass properties of robot links are initially hypothesized from solid modelling and then incorporated in the identification procedure. Coulomb friction and gravity contributions to motor torques are taken into account: their identification is carried out by means of ordinary least-squares algorithms based on motor currents measurements during several slow motion tests. Moreover, the effect of external forces applied at the end-effector is introduced in the model and analysed by driving the robot end-effector against a calibrated compliant cell. Eventually, the static model is profitably used in an industrial operation of Friction Stir Welding to estimate the external forces applied at the tool mechanical interface providing some benefits: a deeper understanding of the technological process parameters and the possibility to realize model-based controls.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号