首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
无线电   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Watermarking as communications with side information   总被引:26,自引:0,他引:26  
Several authors have drawn comparison between embedded signaling or watermarking and communications, especially spread-spectrum communications. We examine the similarities and differences between watermarking and traditional communications. This comparison suggests that watermarking most closely resembles communications with side information at the transmitter and or detector, a configuration originally described by Shannon (1958). This leads to several novel characteristics and insights regarding embedded signaling which are discussed in detail  相似文献   
2.
We consider uncertainty classes of noise distributions defined by a bound on the divergence with respect to a nominal noise distribution. The noise that maximizes the minimum error probability for binary-input channels is found. The effect of the reduction in uncertainty brought about by knowledge of the signal-to-noise ratio is also studied. The particular class of Gaussian nominal distributions provides an analysis tool for near-Gaussian channels. The asymptotic behavior of the least favorable noise distribution and the resulting error probability are studied in a variety of scenarios, namely: asymptotically small divergence with and without power constraint; asymptotically large divergence with and without power constraint; and asymptotically large signal-to-noise ratio  相似文献   
3.
Additive-noise channels with binary inputs and zero-threshold detection are considered. We study worst case noise under the criterion of maximum error probability with constraints on both power and divergence with respect to a given symmetric nominal noise distribution. Particular attention is focused on the cases of a) Gaussian nominal distributions and b) asymptotic increase in worst case error probability when the divergence tolerance tends to zero  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号