首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3934篇
  免费   176篇
  国内免费   25篇
电工技术   90篇
综合类   12篇
化学工业   914篇
金属工艺   133篇
机械仪表   112篇
建筑科学   113篇
矿业工程   5篇
能源动力   209篇
轻工业   290篇
水利工程   36篇
石油天然气   21篇
无线电   373篇
一般工业技术   944篇
冶金工业   294篇
原子能技术   18篇
自动化技术   571篇
  2024年   12篇
  2023年   59篇
  2022年   118篇
  2021年   156篇
  2020年   139篇
  2019年   127篇
  2018年   188篇
  2017年   141篇
  2016年   140篇
  2015年   97篇
  2014年   151篇
  2013年   291篇
  2012年   170篇
  2011年   229篇
  2010年   168篇
  2009年   169篇
  2008年   191篇
  2007年   159篇
  2006年   126篇
  2005年   116篇
  2004年   79篇
  2003年   92篇
  2002年   74篇
  2001年   62篇
  2000年   56篇
  1999年   61篇
  1998年   74篇
  1997年   59篇
  1996年   59篇
  1995年   55篇
  1994年   52篇
  1993年   39篇
  1992年   33篇
  1991年   38篇
  1990年   25篇
  1989年   26篇
  1988年   18篇
  1987年   29篇
  1986年   30篇
  1985年   30篇
  1984年   23篇
  1983年   22篇
  1982年   16篇
  1981年   20篇
  1980年   16篇
  1979年   21篇
  1978年   11篇
  1977年   14篇
  1976年   11篇
  1974年   7篇
排序方式: 共有4135条查询结果,搜索用时 15 毫秒
1.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
2.

In this paper, we propose to use Artificial Bee Colony (ABC) optimization to solve the joint mode selection, channel assignment, and power allocation (JMSCPA) problem to maximize system throughput and spectral efficiency. JMSCPA is a problem where the allocation of channel and power depends on the mode selection. Such problems require two step solution and are called bi-level optimization problems. As bi-level optimization increases the complexity and computational time, we propose a modified version of single-level ABC algorithm aided with the adaptive transmission mode selection algorithm to allocate the cellular, reuse, and dedicated modes to the DUs along with channel and power allocation based on the network traffic load scenarios. A single variable, represented by the users (CUs and DUs) is used to allocate mode selection, and channel allocation to solve the JMSCPA problem, leading to a simpler solution with faster convergence, and significant reduction in the computational complexity which scales linearly with the number of users. Further, the proposed solution avoids premature stagnation of conventional ABC into local minima by incorporating a modification in its update procedure. The efficacy of the ABC-aided approach, as compared to the results reported in the literature, is validated by extensive numerical investigations under different simulation scenarios.

  相似文献   
3.
In this study, the cellulose nanoparticles (CNP) isolated from potato peel were used for reinforcement of polyvinyl alcohol (PVA)-based active packaging film. The above film was used to pack the raw prawns (Penaeus monodon) at −20 °C, and the colour change, protein content, TVB-N, TMA and microbial analysis were done at regular interval for prawns stored in CNP-PVA active packaging film. A significant difference was observed in the quality of prawns stored in potato CNP-PVA film compared with prawns packed and stored in polyethylene film. The newly designed active packaging with CNP and fennel seed oil enhanced the shelf life of prawns up to two months for both HOSO (head on shell on) prawn and PD (peeled and deveined) prawn. Hence, the study recommends the potato peel CNP-PVA film with fennel seed oil as better choice to extend the shelf life of the prawns during storage compared with polyethylene packaging.  相似文献   
4.
The custom design of protein–dendron amphiphilic macromolecules is at the forefront of macromolecular engineering. Macromolecules with this architecture are very interesting because of their ability to self-assemble into various biomimetic nanoscopic structures. However, to date, there are no reports on this concept due to technical challenges associated with the chemical synthesis. Towards that end, herein, a new chemical methodology for the modular synthesis of a suite of monodisperse, facially amphiphilic, protein–dendron bioconjugates is reported. Benzyl ether dendrons of different generations (G1–G4) are coupled to monodisperse cetyl ethylene glycol to form macromolecular amphiphilic activity-based probes (AABPs) with a single protein reactive functionality. Micelle-assisted protein labeling technology is utilized for site-specific conjugation of macromolecular AABPs to globular proteins to make monodisperse, facially amphiphilic, protein–dendron bioconjugates. These biohybrid conjugates have the ability to self-assemble into supramolecular protein nanoassemblies. Self-assembly is primarily mediated by strong hydrophobic interactions of the benzyl ether dendron domain. The size, surface charge, and oligomeric state of protein nanoassemblies could be systematically tuned by choosing an appropriate dendron or protein of interest. This chemical method discloses a new way to custom-make monodisperse, facially amphiphilic, protein–dendron bioconjugates.  相似文献   
5.
The cover image is based on the Research Article V2O5/RGO/Pt nanocomposite on oxytetracycline degradation and pharmaceutical effluent detoxification by Mohan, H et al., DOI: 10.1002/jctb.6238 .

  相似文献   

6.
In this work, the sintering behaviour of fluorapatite (FAp)–silicate composites prepared by mixing variable amounts of natural quartz (2.5 wt% to 20 wt%) and FAp was studied. The composites were pressureless sintered in air at temperatures from 1000 °C to 1350 °C. The effects of temperatures on the densification, phase formation, chemical bonding and Vickers hardness of the composites were evaluated. All the samples exhibited mixed phase, comprising FAp and francolite as the major constituents along with some minor phases of cristobalite, wollastonite, dicalcium silicate and/or whitlockite dependent on the quartz content and sintering temperature. The composite containing 2.5 wt% quartz exhibited the best sintering properties. The highest bulk density of 3 g/cm3 and a Vickers hardness of >4.2 GPa were obtained for the 2.5 wt% quartz–FAp composite when sintered at 1100 °C. The addition of quartz was found to alter the microstructure of the composites, where it exhibited a rod-like morphology when sintered at 1000 °C and a regular rounded grain structure when sintered at 1350 °C. A wetted grain surface was observed for composites containing high quartz content and was believed to be associated with a transient liquid phase sintering.  相似文献   
7.
Nanocrystalline nickel oxide (NiO) was prepared from nickel hydroxide by Spark plasma sintering (SPS) and the mechanisms involved in the densification of NiO were studied. Reverse precipitated nickel hydroxide powders were SPS processed at 400, 600 and 700?°C with 70?MPa pressure. Pure NiO with 12?nm crystallite size formed after 400?°C sintering process. However NiO grains had grown to 18 and 38?nm after 600 and 700?°C sintering respectively. NiO pellets prepared using 600 and 700?°C SPS sintering schedules had relative densities of 83% and 94% respectively. Two displacement rate regimes were observed during densification of NiO in both 600 and 700?°C sintering processes. Decomposition of nickel hydroxide and particle sliding of NiO led to first displacement rate maximum while inverse Hall-Petch based plastic deformation facilitated densification during the constant second displacement rate regime. No densification occurred during sintering holding times indicating the limited role that diffusion played during densification.  相似文献   
8.
The cracks in the workpiece specimens can reduce the fatigue life of any machine components. Since the residual stress has a considerable amount of influence on determining crack formation over the machined surface, it is very essential to analyze the residual stress developed in any machining process. However, it is a very tedious process to compute the residual stress over the machined surface. In the present study, an endeavor has been made to measure and analyze the residual stress of machined silicon steel as a workpiece using the EDM process with different energy distribution. The nano-indentation method was used to compute the residual stress produced over the machined surface. From the experimental results, it was found that the uniform energy distribution has produced higher compressive residual stress owing to the tiny and uniform spark energy distribution. It has also been observed that the tool electrode has a considerable amount of influence on determining development of residual stress in the EDM process.  相似文献   
9.
Ferrites may contain single domain particles which gets converted into super-paramagnetic state near critical size. To explore the existence of these characteristic feature of ferrites, we have performed magnetization(M-H loop) and Mössbauer spectroscopic studies of Ni2+ substitution effect in Co1-xNixFe2O4 (where x?=?0, 0.25, 0.5, 0.75 and 1) nanoparticles were fabricated by solution combustion route using mixture of carbamide and glucose as fuels for the first time. As prepared samples exhibit spinel cubic structure with lattice parameters which decreases linearly with increase in Ni2+ concentration. The M-H loops reveals that saturation magnetization(Ms), coercive field(Hc) remanence magnetization(Mr) and magnetron number(ηB) decreases significantly with increasing Ni2+ substitution. The variation of saturation magnetization has been explained on the basis of Neel's molecular field theory. The coercive field(Hc) is found strongly dependent on the concentration of Ni2+ and decrease of coercivity suggests that the particles have single domain and exhibits superparamagnetic behavior. The Mössbauer spectroscopy shows two ferrimagnetically relaxed Zeeman sextets distribution at room temperature. The dependence of Mössbauer parameters such as isomer shift, quadru pole splitting, line width and hyperfine magnetic field on Ni2+ concentration have been discussed. Hence our results suggest that synthesized materials are potential candidate for power transformer application.  相似文献   
10.
A three dimensional, transient model is developed for studying heat transfer, fluid flow and mass transfer for the case of a single-pass laser surface alloying process. The numerical study is performed in a co-ordinate system fixed to the laser which moves with a constant scanning speed. The coupled momentum, energy and species conservation equations are solved using a finite volume technique. Phase change processes are modelled using a fixed-grid enthalpy-porosity technique, which is capable of predicting the continuously evolving solid-liquid interface. The three-dimensional model is able to predict the species concentration distribution inside the molten pool during alloying, as well as in the entire cross section of the solidified alloy. Corresponding experimental results show a good qualitative agreement with the numerical predictions with regard to pool shape and final composition distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号