首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   770篇
  免费   46篇
  国内免费   3篇
电工技术   11篇
综合类   1篇
化学工业   301篇
金属工艺   28篇
机械仪表   12篇
建筑科学   15篇
矿业工程   3篇
能源动力   39篇
轻工业   20篇
水利工程   11篇
石油天然气   4篇
无线电   47篇
一般工业技术   174篇
冶金工业   87篇
原子能技术   9篇
自动化技术   57篇
  2024年   4篇
  2023年   10篇
  2022年   8篇
  2021年   28篇
  2020年   26篇
  2019年   20篇
  2018年   32篇
  2017年   34篇
  2016年   35篇
  2015年   23篇
  2014年   38篇
  2013年   74篇
  2012年   39篇
  2011年   44篇
  2010年   40篇
  2009年   29篇
  2008年   41篇
  2007年   29篇
  2006年   33篇
  2005年   28篇
  2004年   19篇
  2003年   9篇
  2002年   10篇
  2001年   13篇
  2000年   7篇
  1999年   2篇
  1998年   16篇
  1997年   10篇
  1996年   12篇
  1995年   10篇
  1994年   7篇
  1993年   11篇
  1992年   10篇
  1991年   2篇
  1990年   2篇
  1989年   8篇
  1988年   6篇
  1987年   10篇
  1986年   9篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1977年   6篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1970年   2篇
排序方式: 共有819条查询结果,搜索用时 13 毫秒
1.
Sustainable biocomposites have gained considerable interest as an alternative to conventional composites in recent years due to their cost-effectiveness and environmental friendliness. The aim of this study was to investigate the performance and durability behavior of biocomposites from sustainable biocarbon (BC) as compared to conventional established fillers. The poly(butylene terephthalate) (PBT) and its composites reinforced with BC, talc, and glass fiber (GF) were prepared and the durability performances was investigated. The study showed that BC/PBT biocomposites provided a lighter weight alternative to traditionally used fillers. After undergoes thermo-oxidative aging, the mechanical properties of BC/PBT biocomposite were deteriorated. The GF/PBT showed the most stable in retaining its mechanical properties in comparison to the talc/PBT and BC/PBT. The aging behavior and mechanism of the PBT composites were discussed. This study provides further insight on the durability-related properties progression of biocomposites as compared to traditional used fillers. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47722.  相似文献   
2.
A three-dimensional laser-keyhole welding model is developed, featuring the self-consistent evolution of the liquid/vapor (L/V) interface together with full simulation of fluid flow and heat transfer. Important interfacial phenomena, such as free surface evolution, evaporation, kinetic Knudsen layer, homogeneous boiling, and multiple reflections, are considered and applied to the model. The level set approach is adopted to incorporate the L/V interface boundary conditions in the Navier-Stokes equation and energy equation. Both thermocapillary force and recoil pressure, which are the major driving forces for the melt flow, are incorporated in the formulation. For melting and solidification processes at the solid/liquid (S/L) interface, the mixture continuum model has been employed. The article consists of two parts. This article (Part I) presents the model formulation and discusses the effects of evaporation, free surface evolution, and multiple reflections on a steady molten pool to demonstrate the relevance of these interfacial phenomena. The results of the full keyhole simulation and the experimental verification will be provided in the companion article (Part II).  相似文献   
3.
4.
5.
6.
Phase transformation studies have been made of the Mn-Al alloys with compositions near the equiatomic range with or without small amounts of carbon, copper and nickel, using differential thermal analysis, X-ray diffraction and optical and electron microscopy. The high temperature hexagonal phase obtained by quenching, transforms to the ferromagnetic phase between 500 and 550° C and on further heating transforms back to the hexagonal phase between 750 and 950° C. Also, on controlled cooling of the phase from about 900° C, the ferromagnetic phase is formed between 800 and 670° C. TEM studies have shown the presence of the B19 ordered phase, ferromagnetic phase and Mn5Al8 precipitates even in quenched alloys.  相似文献   
7.
A mathematical model for the transient heat flow analysis in arc-welding processes is proposed, based on a unique set of boundary conditions. The model attempts to make use of the relative advantages of analytical as well as numerical techniques in order to reduce the problem size for providing a quicker solution without sacrificing the accuracy of prediction. The variation of thermo-physical properties with temperature has been incorporated into the model to improve the thermal analysis in the weld and heat-affected zones. The model has been evaluated using a five-point explicit finite difference method for analysing the welding heat flow in thin plates of two different geometric configurations. The temperature distribution closer to the heat source, primarily in the weld zone and the heat-affected zones, are predicted by the numerical technique. The thermal characteristics beyond the heat-affected zone are amenable to standard analytical techniques. The behaviour of the boundary condition in the model has been investigated in detail.Nomenclature q Rate of heat per unit thickness (Wm–1) - d Plate thickness (m) - v Velocity of source (m s–1) - t Time (s) - T Temperature value at the desired point (K) - T 0 Initial temperature (K) - K Thermal conductivity (W m–1 K–1) - Density (kg m–3) - c p Specific heat (J kg–1 K–1) - Thermal diffusivity (m2 s–1) - n - Distance of point considered from the source (=x–vt) (m) - K 0 Modified Bessel function of second kind and zero order - r Radial distance from the source (r=(x 2+y 2)1/2) (m) - Model width (m) - a Plate width (m) - Distance from the source =(2+4 ×10–4)1/2 (m) - n   相似文献   
8.
Antimicrobial resistance has long been viewed as a lethal threat to global health. Despite the availability of a wide range of antibacterial medicines all around the world, organisms have evolved a resistance mechanism to these therapies. As a result, a scenario has emerged requiring the development of effective antibacterial drugs/agents. In this article, we exclusively highlight a significant finding reported by Zbořil and associates (Adv. Sci. 2021, 2003090). The authors construct a covalently bounded silver-cyanographene (GCN/Ag) with the antibacterial activity of 30 fold higher than that of free Ag ions or typical Ag nanoparticles (AgNPs). Ascribed to the strong covalent bond between nitrile and Ag, an immense cytocompatibility is shown by the GCN/Ag towards healthy human cells with a minute leaching of Ag ions. Firm interactions between the microbial membrane and the GCN/Ag are confirmed by molecular dynamics simulations, which rule out the dependence of antibacterial activity upon the Ag ions alone. Thus, this study furnishes ample scope to unfold next-generation hybrid antimicrobial drugs to confront infections arising from drug and Ag-resistant bacterial strains.  相似文献   
9.

A temperature sensor based on photonic crystal structures with two- and three-dimensional geometries is proposed, and its measurement performance is estimated using a machine learning technique. The temperature characteristics of the photonic crystal structures are studied by mathematical modeling. The physics of the structure is investigated based on the effective electrical permittivity of the substrate (silicon) and column (air) materials for a signal at 1200 nm, whereas the mathematical principle of its operation is studied using the plane-wave expansion method. Moreover, the intrinsic characteristics are investigated based on the absorption and reflection losses as frequently considered for such photonic structures. The output signal (transmitted energy) passing through the structures determines the magnitude of the corresponding temperature variation. Furthermore, the numerical interpretation indicates that the output signal varies nonlinearly with temperature for both the two- and three-dimensional photonic structures. The relation between the transmitted energy and the temperature is found through polynomial-regression-based machine learning techniques. Moreover, rigorous mathematical computations indicate that a second-order polynomial regression could be an appropriate candidate to establish this relation. Polynomial regression is implemented using the Numpy and Scikit-learn library on the Google Colab platform.

  相似文献   
10.

High nitrogen steels provide excellent mechanical properties and corrosion resistance but are prone to form precipitates which adversely affect the corrosion resistance and toughness. High nitrogen steel powders currently available in the market are not claimed to be precipitate free. It is critical to avoid these precipitates while retaining nitrogen in the dissolved form to realize the value of these powder alloys. However, retaining high level of dissolved nitrogen in steel powder during melt atomization process is very challenging. Instead, solid-state dissolution of nitrogen into the powder alloy followed by rapid cooling may provide a convenient approach to avoid precipitate formation compared to traditional melt processing. This study presents a solution treatment approach to achieve elevated dissolved nitrogen levels (~ 0.4 wt pct) in Fe–Mn–Cr powder alloy with negligible precipitation of nitrides. The influence of starting material, holding time, temperature and cooling rate on the resulting microstructure is presented. A fully austenite matrix with high dissolved nitrogen content resulted in powders with desired mechanical properties.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号