首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   27篇
  国内免费   2篇
电工技术   3篇
化学工业   55篇
金属工艺   5篇
机械仪表   10篇
建筑科学   4篇
能源动力   11篇
轻工业   10篇
水利工程   5篇
石油天然气   1篇
无线电   29篇
一般工业技术   67篇
冶金工业   24篇
自动化技术   34篇
  2024年   1篇
  2023年   9篇
  2022年   13篇
  2021年   12篇
  2020年   16篇
  2019年   14篇
  2018年   29篇
  2017年   15篇
  2016年   16篇
  2015年   10篇
  2014年   15篇
  2013年   14篇
  2012年   9篇
  2011年   17篇
  2010年   13篇
  2009年   16篇
  2008年   14篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1996年   4篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有258条查询结果,搜索用时 31 毫秒
1.
The interplay of viscous, gravity and capillary forces determines the flow behavior of two or more phases through porous materials. In this study, a rule-based dynamic network model is developed to simulate two-phase flow in three-dimensional porous media. A cubic network analog of porous medium is used with cubic bodies and square cross-section throats. The rules for phase movement and redistribution are devised to honor the imbibition and drainage physics at pore scale. These rules are based on the pressure field within the porous medium that is solved for by applying mass conservation at each node. The pressure field governs the movement and flow rates of the fluids within the porous medium. Film flow has been incorporated in a novel way. A pseudo-percolation model is proposed for low but non-zero capillary number (ratio of viscous to capillary forces). The model is used to study primary drainage with constant inlet flow rate and constant inlet pressure boundary conditions. Non-wetting phase front dynamics, apparent wetting residuals (Swr), and relative permeability are computed as a function of capillary number (Nca), viscosity ratio (M), and pore-throat size distribution. The simulation results are compared with experimental results from the literature. Depending upon the flow rate and viscosity ratio, the displacement front shows three distinct flow patterns—stable, viscous fingering and capillary fingering. Capillary desaturation curves (Swr vs. Nca) depend on the viscosity ratio. It is shown that at high flow rates (or high Nca), relative permeability assumes a linear dependence upon saturation. Pseudo-static capillary pressure curve is also estimated (by using an invasion percolation model) and is compared with the dynamic capillary pressure obtained from the model.  相似文献   
2.
3.
This paper proposes a face recognition system to overcome the problem due to illumination variation. The propose system first classifies the image's illumination into dark, normal or shadow and then based on the illumination type; an appropriate technique is applied for illumination normalization. Propose system ensures that there is no loss of features from the image due to a proper selection of illumination normalization technique for illumination compensation. Moreover, it also saves the processing time for illumination normalization process when an image is classified as normal. This makes the approach computationally efficient. Rough Set Theory is used to build rmf illumination classifier for illumination classification. The results obtained as high as 96% in terms of accuracy of correct classification of images as dark, normal or shadow.  相似文献   
4.
This study for the first time reports on fresh water microalgae Chlorella minutissima aqueous extract (CmAe) which was utilized for the biogenic synthesis of silver nanoparticles and tested their antineoplastic potential against Liver Hepatocellular Carcinoma (HepG2) cell line. The characteristic colour change of the reaction mixture from greenish yellow to yellowish brown confirmed the synthesis of Chlorella minutissima silver nanoparticles (CmAgNPs). Microscopic analysis revealed CmAgNPs to be spherical‐shaped with particle size ranging from 10 to 30 nm. The carbohydrates and proteins distinctive peaks were observed in Fourier transform infrared spectroscopy (FTIR) spectra which suggested these biomolecules acted as reducing and capping agents. Further, the crystalline nature of CmAgNPs was confirmed by X‐ray diffraction (XRD) analysis. CmAgNPs showed maximum free radical scavenging proving it to be more potent antioxidant agent as compared to CmAe. The mortality rate of HepG2 cells treated with CmAgNPs was found to be 91.8 % at 120 μg/ml with IC50 value 12.42 ± 1.096 μg/ml after 48 h whereas no effect was observed on normal Human Embryonic Kidney (HEK 293) cells. Fluorescent images of the treated HepG2 cells revealed the formation of apoptotic bodies, condensed nuclei and cell shrinkage indicating their effectiveness against the cancer cells.Inspec keywords: silver, nanoparticles, nanomedicine, microorganisms, cellular biophysics, nanofabrication, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, proteins, Fourier transform infrared spectra, molecular biophysics, X‐ray chemical analysis, X‐ray diffraction, kidney, cancer, biomedical materialsOther keywords: antineoplastic potential, antioxidant potential, phycofabricated silver nanoparticle, Chlorella minutissima, freshwater microalgae, aqueous extract, liver hepatocellular carcinoma cell line, CmAgNP synthesis, field emission scanning electron microscopy, high‐resolution transmission electron microscopy, atomic force microscopy, dynamic light scattering, carbohydrate, protein, Fourier transform infrared spectroscopy, biomolecule, energy‐dispersive X‐ray spectroscopy, elemental silver signal, CmAgNP crystalline, X‐ray diffraction analysis, antioxidant agent, HepG2 cell mortality rate, human embryonic kidney, HEK 293 cell, fluorescent image, apoptotic body formation, condensed nuclei, cell shrinkage, cancer cell, antineoplastic agent, Ag  相似文献   
5.
Context: Docosahexanoic acid (DHA) is an essential omega-3 fatty acid for normal brain development and its use has increased considerably in recent years.

Objective: The aim of this study is to develop and evaluate self-nanoemulsifying drug delivery systems (SNEDDS) of DHA for improved palatability, dispersibility and bioavailability.

Methods: The SNEDDS were prepared and evaluated for miscibility, employing different combinations of olive oil and soyabean oil as oil phase, Span 80, Span 20, soya phosphatidylcholine, Labrafil M 1944 CS as surfactants while Tween 80, PEG 400, Cremophor RH40 and propylene glycol as cosurfactants. Thermodynamically stable SNEDDS were characterized for dispersibility, self-emulsification time, droplet size, zeta potential along with sensory analysis. The optimized formulation was subjected to ex vivo and in vivo evaluation such as intestinal permeability, memory performance test, brain concentration and histopathology studies.

Results: The optimized SNEDDS formulation showed emulsification time of 27?±?4.7?s with droplet size of 17.6?±?3.5?nm and zeta potential of??37.6?±?0.5?mV. Intestinal absorption study depicted 18.3%, 21.5%, 41.5%, 98.7% absorption of DHA with SNEDDS-based formulation in comparison to 8.2%, 15.1%, 28.8%, 46.1% absorption of DHA with oil-based marketed formulation after 0.5, 1, 2 and 4?h. DHA concentration in brain homogenate was found to be increased to 2.6-fold in comparison to DHA-marketed formulation. This could be ascribed to enhanced dispersibility and bioavailability of DHA from nanosized formulation.

Conclusion: The developed formulation led to enhanced dispersibility and bioavailability of DHA due to the formation of nanodroplets.  相似文献   
6.
This paper presents a comparison of two algorithms—the forward-elimination and branch-segment transformation equations—for separating out end-node variables for each branch to model both steady and unsteady flows in branched and looped canal networks. In addition, the performance of the recursive forward-elimination method is compared with the standard forward-elimination method. The Saint–Venant equations are discretized using the four-point implicit Preissmann scheme, and the resulting nonlinear system of equations is solved using the Newton–Raphson method. The algorithm using branch-segment transformation equations is found to be at least five times faster than the algorithm using the forward-elimination method. Further, the algorithm using branch-segment transformation equations requires less computer storage than the algorithm using the forward-elimination method, particularly when only nonzero elements of the global matrix are stored. Comparison between the Gauss-elimination method and the sparse matrix solution technique for the solution of the global matrix revealed that the sparse matrix solution technique takes less computational time than the Gauss-elimination method.  相似文献   
7.
Sajwan  Mohit  Gosain  Devashish  Sharma  Ajay K. 《Wireless Networks》2019,25(5):2603-2620
Wireless Networks - In this article, we propose a novel routing algorithm for wireless sensor network, which achieves uniform energy depletion across all the nodes and thus leading to prolonged...  相似文献   
8.
Polyethersulfone (PES) composites were developed with carbon fabric (CF). Cold remote nitrogen oxygen plasma (CRNOP) treatment was employed to the CF to incorporate functional groups and promote fiber–matrix adhesion. This study includes the effect of PES melt flow index (MFI) on the wettability of CF and its influence on fretting wear performance. Evaluations of fretting wear properties of composites led to the conclusion that the CRNOP treatment proved beneficial to enhance performance properties significantly. Polymer MFI and treatment to CF proved to be the decisive parameters for controlling performance of composites apart from operating parameters. Perforations on the treated carbon fiber, evidently observed by FESEM, improved the fiber–matrix adhesion, and hence the performance properties. Artificial neuron network (ANN) was used for prediction of the wear behavior of composites.  相似文献   
9.
The success of irrigation system operation and planning depends on accurate quantification of supply and demand, and an equitable distribution of available water. The ultimate aim of this study was to determine how to meet the irrigation water demands if possible or to minimize the gap between the water supply and the demand. Most of the irrigation literature focuses only on the demand and the distribution aspects of this issue Irrigation projects that receive water from reservoirs, however, can be challenging to manage because the annual fluctuations in available water release from a reservoir can have a considerable impact on the irrigation management strategy. In real‐world situations, the reservoir operating rules guide reservoir operators in making actual water release decisions. This study develops a water balance simulation model for reservoir management, as well as testing it for Kangsabati Reservoir, West Bengal, India. Two rule curves for deciding irrigation water available from the reservoir were generated by taking the average and minimum stage values on a daily basis for a 16‐year period (1988–2003). Maintaining a minimum stage of 120.4 m throughout the year served as another rule to decide the release water available for irrigation. The minimum allowable stage of reservoir corresponding to a particular date of the year can be determined from those reservoir specific rule curves generated for irrigation purposes. The maximum permissible water release/outflow for irrigation from the test reservoir was taken as the volume of water available above the minimum allowable stage corresponding to the selected rule curve. The saturated hydraulic conductivity value (KS) was calibrated to be 4.31 mm day?1 for Kangsabati Reservoir.  相似文献   
10.
The potential of the copolymer polycaprolactone‐co‐ poly‐d ,l ‐lactic acid (PCLLA ) as a biomaterial for scaffold‐based therapy for breast tissue engineering applications was assessed. First, the synthesized PCLLA was evaluated for its processability by means of additive manufacturing (AM ). We found that the synthesized PCLLA could be fabricated into scaffolds with an overall gross morphology and porosity similar to that of polycaprolactone. The PCLLA scaffolds possessed a compressive Young's modulus (ca 46 kPa ) similar to that of native breast (0.5 ? 25 kPa ), but lacked thermal stability and underwent thermal degradation during the fabrication process. The PCLLA scaffolds underwent rapid degradation in vitro which was characterized by loss of the scaffolds' mechanical integrity and a drastic decrease in mass‐average molar mass (M w) and number‐average molar mass (M n) after 4 weeks of immersion in phosphate buffer solution maintained at 37 °C. The tin‐catalysed PCLLA scaffold was also found to have cytotoxic effects on cells. Although the initial mechanical properties of the PCLLA scaffolds generally showed potential for applications in breast tissue regeneration, the thermal stability of the copolymer for AM processes, biocompatibility towards cells and degradation rate is not satisfactory at this stage. Therefore, we conclude that research efforts should be geared towards fine‐tuning the copolymer synthesizing methods. © 2016 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号