首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
无线电   5篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
n-TiN/p-Hg3In2Te6 heterostructures are fabricated by depositing a thin n-type titanium nitride (TiN) film onto prepared p-type Hg3In2Te6 plates using reactive magnetron sputtering. Their electrical and photoelectric properties are studied. Dominant charge-transport mechanisms under forward bias are analyzed within tunneling-recombination and tunneling models. The fabricated n-TiN/p-Hg3In2Te6 structures have the following photoelectric parameters at an illumination intensity of 80 mW/cm2: the open-circuit voltage is VOC = 0.52 V, the short-circuit current is ISC = 0.265 mA/cm2, and the fill factor is FF = 0.39.  相似文献   
2.
Solovan  M. M.  Brus  V. V.  Mostovyi  A. I.  Maryanchuk  P. D.  Orletskyi  I. G.  Kovaliuk  T. T.  Abashin  S. L. 《Semiconductors》2017,51(4):542-548

Photosensitive nanostructured heterojunctions n-TiN/p-Si were fabricated by means of titanium nitride thin films deposition (n-type conductivity) by the DC reactive magnetron sputtering onto nano structured single crystal substrates of p-type Si (100). The temperature dependencies of the height of the potential barrier and series resistance of the n-TiN/p-Si heterojunctions were investigated. The dominant current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse bias. The heterojunctions under investigation generate open-circuit voltage V oc = 0.8 V, short-circuit current I sc = 3.72 mA/cm2 and fill factor FF = 0.5 under illumination of 100 mW/cm2.

  相似文献   
3.
The I–V characteristics of NiO/CdTe heterostructures fabricated by reactive magnetron sputtering are measured at different temperatures. It is established that current transport through the NiO/CdTe heterojunction is mainly controlled via generation–recombination and tunneling under forward bias and via tunneling under reverse bias. The investigated heterostructures generate an open-circuit voltage of V oc = 0.26 V and a short-circuit current density of I sc = 58.7 μA/cm2 at an illumination intensity of 80 mW/cm2.  相似文献   
4.
Anisotype n-TiO2/p-Si heterojunctions are fabricated by the deposition of a TiO2 film on a polished poly-Si substrate using magnetron sputtering. The electrical properties of the heterojunctions are investigated and the dominant charge transport mechanisms are established; these are multi-step tunneling recombination via surface states at the metallurgical TiO2/Si interface at low forward biases V and tunneling at V > 0.6 V. The reverse current through the heterojunctions under study is analyzed within the tunneling mechanism.  相似文献   
5.
Graphite/p-SiC Schottky diodes are fabricated using the recently suggested technique of transferring drawn graphite films onto p-SiC single-crystal substrates. The current–voltage and capacitance–voltage characteristics are measured at different temperatures and at different frequencies of a small-signal AC signal, respectively. The temperature dependences of the potential-barrier height and of the series resistance of the graphite/p-SiC junctions are measured and analyzed. The dominant mechanisms of the charge–carrier transport through the diodes are determined. It is shown that the dominant mechanisms of the transport of charge carriers through the graphite/p-Si Schottky diodes at a forward bias are multi-step tunneling recombination and tunneling described by the Newman formula (at high bias voltages). At reverse biases, the dominant mechanisms of charge transport are the Frenkel–Poole emission and tunneling. It is shown that the graphite/p-SiC Schottky diodes can be used as detectors of ultraviolet radiation since they have the open-circuit voltage Voc = 1.84 V and the short-circuit current density Isc = 2.9 mA/cm2 under illumination from a DRL 250-3 mercury–quartz lamp located 3 cm from the sample.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号