首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
无线电   5篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Recently, power control in mobile ad hoc networks has been the focus of extensive research. Its main objectives are to reduce the total energy consumed in packet delivery and/or increase network throughput by increasing the channel's spatial reuse. In this article, we give an overview of various power control approaches that have been proposed in the literature. We discuss the factors that influence the selection of the transmission power, including the important interplay between the routing (network) and the medium access control (MAC) layers. Protocols that account for such interplay are presented.  相似文献   
2.
Transmission power control (TPC) has great potential to increase the throughput of a mobile ad hoc network (MANET). Existing TPC schemes achieve this goal by using additional hardware (e.g., multiple transceivers), by compromising the collision avoidance property of the channel access scheme, by making impractical assumptions on the operation of the medium access control (MAC) protocol, or by overlooking the protection of link-layer acknowledgment packets. In this paper, we present a novel power controlled MAC protocol called POWMAC, which enjoys the same single-channel, single-transceiver design of the IEEE 802.11 ad hoc MAC protocol but which achieves a significant throughput improvement over the 802.11 protocol. Instead of alternating between the transmission of control (RTS/CTS) and data packets, as done in the 802.11 scheme, POWMAC uses an access window (AW) to allow for a series of request-to-send/clear-to-send (RTS/CTS) exchanges to take place before several concurrent data packet transmissions can commence. The length of the AW is dynamically adjusted based on localized information to allow for multiple interference-limited concurrent transmissions to take place in the same vicinity of a receiving terminal. Collision avoidance information is inserted into the CTS packet and is used to bound/ the transmission power of potentially interfering terminals in the vicinity of the receiver, rather than silencing such terminals. Simulation results are used to demonstrate the significant throughput and energy gains that can be obtained under the POWMAC protocol.  相似文献   
3.
In this paper, we propose a comprehensive solution for power control in mobile ad hoc networks (MANETs). Our solution emphasizes the interplay between the MAC and network layers, whereby the MAC layer indirectly influences the selection of the next-hop by properly adjusting the power of route request packets. This is done while maintaining network connectivity. Channel-gain information obtained mainly from overheard RTS and CTS packets is used to dynamically construct the network topology. Unlike the IEEE 802.11 approach and previously proposed schemes, ours does not use the RTS/CTS packets to silence the neighboring nodes. Instead, collision avoidance information is inserted in the CTS packets and sent over an out-of-band control channel. This information is used to dynamically bound the transmission power of potentially interfering nodes in the vicinity of a receiver. By properly estimating the required transmission power for data packets, our protocol allows for interference-limited simultaneous transmissions to take place in the neighborhood of a receiving node. Simulation results indicate that, compared to the IEEE 802.11 approach, the proposed protocol achieves a significant increase in the channel utilization and end-to-end network throughput and a significant decrease in the total energy consumption.  相似文献   
4.
Recent research in wireless code-division multiple-access systems has shown that adaptive rate/power control can considerably increase network throughput relative to systems that use only power or rate control. In this paper, we consider joint power/rate optimization in the context of orthogonal modulation (OM) and investigate the additional performance gains achieved through adaptation of the OM order. We show that such adaptation can significantly increase network throughput, while simultaneously reducing the per-bit energy consumption relative to fixed-order modulation systems. The optimization is carried out under two different objective functions: minimizing the maximum service time and maximizing the sum of user rates. For the first objective function, we prove that the optimization problem can be formulated as a generalized geometric program (GGP). We then show how this GGP can be transformed into a nonlinear convex program, which can be solved optimally and efficiently. For the second objective function, we obtain a lower bound on the performance gain of adaptive OM (AOM) over fixed-modulation systems. Numerical results indicate that relative to an optimal joint rate/power control fixed-order modulation scheme, the proposed AOM scheme achieves significant throughput and energy gains.  相似文献   
5.
Transmission power control has been used in wireless networks to improve the channel reuse and/or reduce energy consumption. It has been mainly applied to single-input single-output (SISO) systems, where each node is equipped with a single antenna. In this paper, we propose a power-controlled channel access protocol for MIMO-capable wireless LANs with two antennas per node. Our protocol, called E-BASIC, extends the classic CSMA/CA access scheme by allowing for dynamic adjustment of the transmission mode and the transmission power on a per-packet basis so as to minimize the total energy consumption. By transmission mode we mean one of the four possible transmit/receive antenna configurations: 1 × 1 (SISO), 2 × 1 (MISO), 1 × 2 (SIMO), and 2 × 2 (MIMO). Depending on the transmitter-receiver distance, any of the four modes can be the optimal one in terms of minimizing the total energy consumption. We study the performance of E-BASIC in both ad hoc and access point topologies. We also incorporate E-BASIC in the design of a power-aware routing (PAR) scheme that selects minimum-energy end-to-end paths. Our adaptive designs are first conducted assuming fixed-rate transmission, but later extended to multi-rate systems. To account for the energy-throughput tradeoff in our designs, we impose a constraint on the average packet delivery time. Simulations indicate that the proposed adaptations achieve a significant reduction in the overall energy consumption relative to non-adaptive MIMO systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号