首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
无线电   16篇
一般工业技术   2篇
自动化技术   2篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
The recently introduced multichip differential phase-shift keying (MC-DPSK) optical transmission format, entailing the modulation of relative phases over a moving transmission window of successive chip intervals, is analytically and numerically analyzed. The maximum-likelihood optimal MC-DPSK receiver is derived and synthesized using integrated-optic Mach-Zehnder delay interferometers, whose electrical outputs are interpreted as generalized Stokes' parameters. The MC-DPSK performance over a nonlinear fiber channel, limited by the combination of amplified spontaneous emission noise and self-phase modulation, is further derived and simulated, demonstrating that the lowest complexity three-chip binary-phase MC-DPSK receiver provides an ~1-dB Q-factor advantage over conventional DPSK.  相似文献   
2.
We consider large volume job shop scheduling problems, in which there is a fixed number of machines, a bounded number of activities per job, and a large number of jobs. In large volume job shops it makes sense to solve a fluid problem and to schedule the jobs in such a way as to track the fluid solution. There have been several papers which used this idea to propose approximate solutions which are asymptotically optimal as the volume increases. We survey some of these results here. In most of these papers it is assumed that the problem consists of many identical copies of a fixed set of jobs. Our contribution in this paper is to extend the results to the far more general situation in which the many jobs are all different. We propose a very simple heuristic which can schedule such problems. We discuss asymptotic optimality of this heuristic, under a wide range of previously unexplored situations. We provide a software package to explore the performance of our policy, and present extensive computational evidence for its effectiveness.  相似文献   
3.
4.
Spectral analysis of optical mixing measurements   总被引:1,自引:0,他引:1  
A general rigorous theory of optical heterodyne and homodyne measurements is presented. The power spectrum of the photocurrent resulting from two uncorrelated optical beams mixing on a photodetector is derived. In particular, a rigorous analysis is presented for the delayed self-homodyne method which is used to characterize laser source linewidth by a Mach-Zehnder interferometer with a delay exceeding the source coherence length. Existing treatments are generalized to address non-Lorentzian laser sources of arbitrary lineshape. The analysis is further generalized to cover the case of modulated nonstationary sources. An example of the application of this theory is given. It is shown how the theory may be used to interpret an experimental result obtained using the gated delayed self-homodyne technique for characterizing the frequency chirp of laser sources under modulation  相似文献   
5.
A wideband, low drive voltage LiNbO3 electro-optic modulator is demonstrated utilising electrodes patterned according to a 13-bit Barker sequence. It exhibits a 3·5 dB optical insertion loss and a 7·5 V switching voltage. The modulation frequency response remains ⩾-5 dB (optical) to beyond 40 GHz  相似文献   
6.
Recently introduced differential phase-shift keying (DPSK) extensions, collectively referred to here as multilevel differential phase (MDP) formats, explore an increase in data throughput for a given bandwidth by effectively multiplexing differential phase encoding and amplitude modulation onto the same fiber link. In this letter, we derive and present analytic models for the quantum limits of bit-error rate for leading MDP modulation formats (binary phase differential phase amplitude-shift keying (DPASK), quaternary phase DPASK), comparing their performance to that of conventional systems.  相似文献   
7.
We propose a novel multiple-input multiple-output (MIMO) scheme over multimode fiber, acting as a distributed random code generator fed by spatial codes, using silicon photonics in the transmitter and maximum-likelihood (ML) electronic detection in the receiver, providing an alternative to coarse wavelength division multiplexing (CWDM) for implementation of ultrahigh speed parallel transmission over short-range optical interconnects. The optical MIMO system utilizes mutually coherent transmission and conventional direct detection with one-bit quantization, facilitating cost-effective application to 100 Gb/s links over < 50 m.  相似文献   
8.
The probability densities and cumulative distribution functions of decision statistics of optical communications systems are expanded as a Gram-Charlier (G-C) series, leading to arbitrarily accurate systematic evaluation of bit-error rates (BERs) and optimal decision thresholds of optical communication systems. The method displays negligible computational complexity and is applicable whenever the moment or cumulant generating functions of the decision statistics are analytically available. We applied the technique to a birth-and-death Markovian model of a direct-detection receiver with optical preamplifier in a two-level amplitude-shift keying system. The modal expansion series rapidly converged, whereas the alternative saddlepoint approximation method predicted a BER which deviated by 7% from the G-C result.  相似文献   
9.
We consider single-pass, lossless, queueing systems at steady-state subject to Poisson job arrivals at an unknown rate. Service rates are allowed to depend on the number of jobs in the system, up to a fixed maximum, and power consumption is an increasing function of speed. The goal is to control the state dependent service rates such that both energy consumption and delay are kept low. We consider a linear combination of the mean job delay and energy consumption as the performance measure. We examine both the ‘architecture’ of the system, which we define as a specification of the number of speeds that the system can choose from, and the ‘design’ of the system, which we define as the actual speeds available. Previous work has illustrated that when the arrival rate is precisely known, there is little benefit in introducing complex (multi-speed) architectures, yet in view of parameter uncertainty, allowing a variable number of speeds improves robustness. We quantify the tradeoffs of architecture specification with respect to robustness, analysing both global robustness and a newly defined measure which we call local robustness.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号