首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
化学工业   8篇
建筑科学   1篇
能源动力   2篇
轻工业   2篇
无线电   15篇
一般工业技术   13篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2001年   2篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
Fullerenes are candidates for theranostic applications because of their high photodynamic activity and intrinsic multimodal imaging contrast. However, fullerenes suffer from low solubility in aqueous media, poor biocompatibility, cell toxicity, and a tendency to aggregate. C70@lysozyme is introduced herein as a novel bioconjugate that is harmless to a cellular environment, yet is also photoactive and has excellent optical and optoacoustic contrast for tracking cellular uptake and intracellular localization. The formation, water-solubility, photoactivity, and unperturbed structure of C70@lysozyme are confirmed using UV-visible and 2D 1H, 15N NMR spectroscopy. The excellent imaging contrast of C70@lysozyme in optoacoustic and third harmonic generation microscopy is exploited to monitor its uptake in HeLa cells and lysosomal trafficking. Last, the photoactivity of C70@lysozyme and its ability to initiate cell death by means of singlet oxygen (1O2) production upon exposure to low levels of white light irradiation is demonstrated. This study introduces C70@lysozyme and other fullerene-protein conjugates as potential candidates for theranostic applications.  相似文献   
2.
Particle surface area has recently been considered as a possible metric in an attempt to correlate particle characteristics with health effects. In order to provide input to such studies, two Nanoparticle Surface Area Monitors (NSAMs, TSI, Inc.) were deployed in different urban sites within Los Angeles to measure the concentration levels and the diurnal profiles of the surface area of ambient particles. The NSAM's principle of operation is based on the unipolar diffusion charging of particles. Results show that the particle surface concentration decreases from ~150 μ m2 cm?3 next to a freeway to ~ 100 μ m2 cm?3 at 100 m downwind of the freeway, and levels decline to 50–70 μ m2 cm?3 at urban background sites. Up to 51% and 30% of the total surface area corresponded to particles < 40 nm next to the freeway and at an urban background site, respectively. The NSAM signal was well correlated with a reconstructed surface concentration based on the particle number size distribution measured with collocated Scanning Mobility Particle Sizers (SMPSs, TSI, Inc.). In addition, the mean surface diameter calculated by combination of the NSAM and the total particle number concentration measured by a Condensation Particle Counter (CPC, TSI, Inc.) was in reasonable agreement with the arithmetic mean SMPS diameter, especially at the urban site. This study corroborates earlier findings on the application of diffusion chargers for ambient particle monitoring by demonstrating that they can be effectively used to monitor the particle surface concentration, or combined with a CPC to derive the mean surface diameter with high temporal resolution.  相似文献   
3.
Fluorescent protein tomography scanner for small animal imaging   总被引:2,自引:0,他引:2  
Microscopy of fluorescent proteins has enabled unprecedented insights into visualizing gene expression in living systems. Imaging deeper into animals, however, has been limited due to the lack of accurate imaging methods for the visible. We present a novel system designed to perform tomographic imaging of fluorescent proteins through whole animals. The tomographic method employed a multiangle, multiprojection illumination scheme, while detection was achieved using a highly sensitive charge-coupled device camera with appropriate filters. Light propagation was modeled using a modified solution to the diffusion equation to account for the high absorption and high scattering of tissue at the visible wavelengths. We show that the technique can quantitatively detect fluorescence with sub millimeter spatial resolution both in phantoms and in tissues. We conclude that the method could be applied in tomographic imaging of fluorescent proteins for in vivo targeting of different diseases and abnormalities.  相似文献   
4.
We studied the performance of three-dimensional fluorescence tomography of diffuse media in the presence of heterogeneities. Experimental measurements were acquired using an imaging system consisting of a parallel plate-imaging chamber and a lens coupled charge coupled device camera, which enables conventional planar imaging as well as fluorescence tomography. To simulate increasing levels of background heterogeneity, we employed phantoms made of a fluorescent tube surrounded by several absorbers in different combinations of absorption distribution. We also investigated the effect of low absorbing thin layers (such as membranes). We show that the normalized Born approach accurately retrieves the position and shape of the fluorochrome even at high background heterogeneity. We also demonstrate that the quantification is relatively insensitive to a varying degree of heterogeneity and background optical properties. Findings are further contrasted to images obtained with the standard Born expansion and with a normalized approach that divides the fluorescent field with excitation measurements through a homogeneous medium.  相似文献   
5.
6.
This study presents the number, surface and volume concentrations, and size distribution of particles next to the 1-710 freeway during February through April 2006. 1-710 has the highest ratio (up to 25%) of heavy-duty diesel vehicles in the Los Angeles highway network. Particle concentration measurements were accompanied by measurements of black carbon, elemental and organic carbon, and gaseous species (CO, CO2). Using the incremental increase of CO2 over the background to calculate the dilution ratio, this study makes it possible to compare particle concentrations measured next to the freeway to concentrations measured in roadway tunnels and in vehicle exhaust. In addition to the effect of the dilution ratio on the measured particle concentrations, multivariate linear regressions showed that light and heavy organic carbon concentrations are positively correlated with the particle volume in the nucleation and accumulation modes, respectively. Solar radiation was also positively correlated with the particle surface concentration and the particle volume in the accumulation (40-638 nm) mode, presumably as a result of secondary particle formation. The methods developed in this study may be used to decouple the effect of sampling position, meteorology, and fleet operation on particle concentrations in the proximity of freeways, roadway tunnels, and in street canyons.  相似文献   
7.
During the past decade, optical imaging combined with tomographic approaches has proved its potential in offering quantitative three-dimensional spatial maps of chromophore or fluorophore concentration in vivo. Due to its direct application in biology and biomedicine, diffuse optical tomography (DOT) and its fluorescence counterpart, fluorescence molecular tomography (FMT), have benefited from an increase in devoted research and new experimental and theoretical developments, giving rise to a new imaging modality. The most recent advances in FMT and DOT are based on the capability of collecting large data sets by using CCDs as detectors, and on the ability to include multiple projections through recently developed noncontact approaches. For these to be implemented, we have developed an imaging setup that enables three-dimensional imaging of arbitrary shapes in fluorescence or absorption mode that is appropriate for small animal imaging. This is achieved by implementing a noncontact approach both for sources and detectors and coregistering surface geometry measurements using the same CCD camera. A thresholded shadowgrammetry approach is applied to the geometry measurements to retrieve the surface mesh. We present the evaluation of the system and method in recovering three-dimensional surfaces from phantom data and live mice. The approach is used to map the measured in vivo fluorescence data onto the tissue surface by making use of the free-space propagation equations, as well as to reconstruct fluorescence concentrations inside highly scattering tissuelike phantom samples. Finally, the potential use of this setup for in vivo small animal imaging and its impact on biomedical research is discussed.  相似文献   
8.
This article examines the effect of biodiesel blends on the exhaust aerosol from a Euro 3 passenger car. Five different feedstock oils (soybean, palm, sunflower, rapeseed, and used frying oil) were used to produce fuels with 10% vol. content in biodiesel (B10). Use of the B10 blends led to a systematic reduction of PM mass emissions in the range of ~9% (rapeseed) to 23% (used frying oil) on average. The combination of particle size distributions based on the aerodynamic and the mobility diameters led to the estimation of the fractal dimension (DF) for non-volatile particles. This was found to range from 2.52 for the baseline (fossil) fuel to 2.62 for the palm oil blend, suggesting that biodiesel can affect the particle morphology, even at this low blending ratio. The differences were statistically significant. The increase of the DF is translated to more compact particle structure, which in turn denotes lower specific surface area. The volatile fraction of PM lies within a range of 1–9% when fossil diesel fuel is employed. Use of palm, sunflower and rapeseed B10 blends results to PM that contain up to 28% volatile particulate mass. The higher emissions of volatile components together with the lower specific area of non-volatile particles, promotes the formation of volatile particles, especially at high speed conditions. This increases the total particle population under motorway driving by up to three times over the baseline levels.  相似文献   
9.
Complete projection (360 degrees ) free-space fluorescence tomography of opaque media is poised to enable 3-D imaging through entire small animals in vivo with improved depth resolution compared to 360 degrees -projection fiber-based systems or limited-view angle systems. This approach can lead to a new generation of Fluorescence Molecular Tomography (FMT) performance since it allows high spatial sampling of photon fields propagating through tissue at any projection, employing nonconstricted animal surfaces. Herein, we employ a volume carving method to capture 3-D surfaces of diffusive objects and register the captured surface in the geometry of an FMT 360 degrees -projection acquisition system to obtain 3-D fluorescence image reconstructions. Using experimental measurements we evaluate the accuracy of the surface capture procedure by reconstructing the surfaces of phantoms of known dimensions. We then employ this methodology to characterize the animal movement of anaesthetized animals. We find that the effects of animal movement on the FMT reconstructed image were within system resolution limits (approximately 0.07 cm).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号