首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
无线电   5篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
A novel BIpolar Transistor Selected (BITS) P-channel flash memory cell is proposed, where a bipolar transistor embedded in the source region of the cell amplifies cell-read-current and acts as a select transistor. With this cell, not only a very low 1.5 V non-word-line-boosting read operation, but also a sector-erase operation are successfully achieved with only a small cell-size increase over the conventional NOR cell. Moreover, this cell technology maintains all the advantages of the P-channel DIvided-bit-line NOR (DINOR) flash memory  相似文献   
2.
An optimized single-pole double-throw (SPDT) transmit/receive (T/R) switch has been fabricated using depletion-layer-extended transistors (DETs) in a 0.18 /spl mu/m CMOS process. The switch features the highest performance to date of any switch using a CMOS process, of a 0.8 dB insertion-loss, 23 dB isolation and 17.4 dBm power-handling capability at 5 GHz. The low insertion-loss has been achieved with the effects of junction capacitance decrease and substrate resistance increase in the DET, the adoption of low-loss shielded-pads, and several layout optimizations. The high power-handling capability is owing to the combined effect of the adoption of the source/drain dc biasing scheme and the high substrate resistance in the DET.  相似文献   
3.
This paper describes a novel self-limiting high-speed program scheme of the p-channel DINOR (D_I_vided bit line N_O_R_) flash memory utilizing n-channel select transistors. This scheme makes it possible to maintain the high programming throughput of the p-channel DINOR even for future lower-voltage operation. Using this scheme, programming stops automatically at the desired threshold voltage state without any conventional verify operations. Moreover, the only structural change from the conventional p-channel DINOR is the change of the impurity type of the select transistors, and the only operational change is the addition of a very short negative voltage pulse of 0.1 μs to each programming gate pulse. This shortness of the additional pulse hardly degrades the programming speed at all. This novel scheme is expected to become a key technology for the realization of future, high-performance, lower-supply-voltage p-channel DINOR flash memories  相似文献   
4.
The P-channel DINOR flash memory, which uses the band-to-band tunneling induced hot electron (BBHE) program method having the advantages of high scalability, high efficiency, and high oxide reliability, was fabricated by 0.35-μm-rule CMOS process and was investigated in detail. An ultra-high programming throughput of less than 8 ns/byte (=4 μs/512 byte) and a low current consumption of less than 250 μA were achieved by utilizing 512-byte parallel programming. Furthermore, we investigated its endurance characteristics up to 106 program/erase cycles, and window narrowing and Gm degradation were found to be very small even after 106 cycles. It is thought that the BBHE injection point contributes to the G m stability and the oxide-damage-reduced operation contributes to the good window narrowing characteristics. The P-channel DINOR flash memory realizing high programming throughput with low power consumption is one of the strongest candidates for the next generation of high-performance, low-voltage flash memories  相似文献   
5.
This paper reports a 21.5-dBm power-handling 5-GHz transmit/receive CMOS switch utilizing the depletion-layer-extended transistor (DET), which possesses high effective substrate resistance and enables the voltage division effect of the stacked transistor configuration to work in the CMOS switch. Furthermore, low insertion losses of 0.95 and 1.44 dB are accomplished at 5 GHz in the transmit and receive modes, respectively, with the benefit of the insertion-loss improvement effects in the DET. At the same time, high isolations of more than 22 dB were obtained at 5 GHz in the transmit and receive modes with the adoption of the shunt/series type circuit.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号