首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
无线电   5篇
一般工业技术   7篇
  2011年   1篇
  2008年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1996年   2篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
We introduce transverse diffusion of laminar flow profiles (TDLFP), the first generic method for mixing two or more reactants inside capillaries. Conceptually, solutions of reactants are injected inside the capillary by pressure as a series of consecutive plugs. Due to the laminar nature of flow inside the capillary, the nondiffused plugs have parabolic profiles with predominantly longitudinal interfaces between them. After injection, the plugs are mixed by transverse diffusion; longitudinal diffusion does not contribute to mixing. To prove the principle, we used TDLFP to mix two reactants-an enzyme and its substrate. After mixing the reactants by TDLFP, we incubated reaction mixtures for different periods of time and measured the reaction kinetics. We found that the reaction proceeded in time- and concentration-dependent fashion, thus confirming that the reactants were mixed by TDLFP. Remarkably, the experimental reaction kinetics were not only in qualitative agreement but also in good quantitative agreement with theoretically predicted ones. TDLFP has a number of enabling features. By facilitating the preparation of reaction mixtures inside the capillary, TDLFP lowers reagent consumption to nanoliters (microliters are required for conventionally mixing reagents in a vial). The reaction products can be then analyzed "on-line" by capillary separation coupled with optical, electrochemical, or mass spectrometric detection. The combination of TDLFP with capillary separation will be an indispensable tool in screening large combinatorial libraries for affinity probes and drug candidates: a few microliters of a target protein will be sufficient to screen thousands of compounds. The new method paves the road to a wide use of capillary nanoreactors in different areas of physical and life sciences.  相似文献   
2.
A simple true 1 transistor dynamic random access memory (DRAM) cell concept is proposed for the first time, using the body charging of partially-depleted SOI devices to store the logic "1" or "0" binary states. This cell is two times smaller in area than the conventional 8F 2 1T/1C DRAM cell and the process of its manufacturing does not require the storage capacitor fabrication steps. This concept will allow the manufacture of simple low cost DRAM and embedded DRAM chips for 100 and sub-100 nm generations  相似文献   
3.
Transverse diffusion of laminar flow profiles (TDLFP) was recently suggested as a generic approach for mixing reactants inside a capillary microreactor. Conceptually, solutions of reactants are injected inside the capillary by high pressure as a series of consecutive plugs. Because of the laminar nature of the flow inside the capillary, the nondiffused plugs have parabolic profiles with predominantly longitudinal interfaces between the plugs. After the injection, the reactants are mixed by transverse diffusion across the longitudinal interfaces. TDLFP-based mixing is still in its infancy as only the principle was proved. Here, we develop the theory of TDLFP and introduce a dimensionless parameter, York number, which can be used in predicting the quality of TDLFP-based mixing. The theory uses a single simplifying assumption that the longitudinal diffusion is negligible; this assumption is readily satisfied. We then develop a numerical model of TDLFP and use it to simulate the concentration profiles of three reactants mixed by TDLFP in the capillary. The correlation between the York number and quality of mixing is analyzed. Two ways of improving the quality of TDLFP-based mixing are suggested and studied: (i) increasing the longitudinal interface between the plugs by a long last plug of a solvent and (ii) "shaking" the injected reactants by a series of alternating negative and positive pressure pulses. The developed theory and computational simulation of TDLFP will stimulate the practical use of capillary microreactors.  相似文献   
4.
We present a method for direct determination of rate constants of complex formation, k(on), and dissociation, k(off). The method is termed plug-plug kinetic capillary electrophoresis (ppKCE). To explain the concept of the method, we consider the formation of a noncovalent complex C between molecules A and B; A is assumed to migrate slower in electrophoresis than B. In ppKCE, a short plug of A is injected into a capillary, followed by a short plug of B. When a high voltage is applied, the electrophoretic zone of B moves through that of A, allowing for the formation of C. When the zones of A and B are separated, C starts dissociating. The features of the resulting electropherogram are defined by both binding and dissociation. We developed a unique mathematical approach that allows finding k(on) and k(off) from a single electropherogram without nonlinear regression analysis. The approach uses algebraic functions with the only input parameters from electropherograms being areas and migration times of electrophoretic peaks. In this work, we explain theoretical bases of ppKCE and prove the principle of the method by finding k(on) and k(off) for a protein-ligand complex. The unique capability of the method to directly determine both k(on) and k(off) along with its simplicity make ppKCE highly attractive to a broad community of molecular scientists.  相似文献   
5.
To perform a current sensing in capacitorless 1-transistor (1T) DRAMs on SOI, we have developed a sensing scheme with automatic reference generation. The reference current is generated by an adjustable current source. The electrical calibration of the reference current source is performed using a digital-to-analog converter and a successive approximations algorithm. By setting the reference just below the current of the data state "1", the data retention time in the holding mode is maximized. The proposed scheme is evaluated in a 2-kb test chip implemented in a 1-/spl mu/m partially depleted (PD) SOI process. The measured retention time under holding conditions is higher than 1s. In the continuous read mode, a few hundreds of the read cycles can be performed without a refresh operation. The test chip measures an access time of 25 ns with a read cycle time of 70 ns.  相似文献   
6.
We recently introduced a new electrophoretic method, nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM). NECEEM provides a unique way of finding kinetic and equilibrium parameters of the formation of intermolecular complexes from a single electropherogram and allows for the use of weak affinity probes in protein quantitation. In this work, we study theoretical bases of NECEEM by developing a mathematical model for the new method. By solving a system of partial differential equations with diffusion in linear approximation, we found the analytical solution for concentrations of components involved in complex formation as functions of time from the beginning of separation and position in the capillary. The nonnumerical nature of the solution makes it a powerful tool in studying the theoretical foundations of the NECEEM method and modeling experimental results. We demonstrate the use of the model for finding binding parameters of complex formation by nonlinear regression of NECEEM electropherograms obtained experimentally.  相似文献   
7.
Improved methods for extracting lateral spatial profiles of interface traps in electrically stressed MOSFETs from gate-induced drain leakage and charge pumping measurements are proposed. Simplified theoretical models are developed. The formal similarity of the two methods is shown. The results obtained on submicron MOSFET after uniform (Fowler-Nordheim) and nonuniform (hot carrier) stress are compared and found to be in good agreement. The relative merits of these techniques are discussed  相似文献   
8.
Application of capillary electrophoresis (CE) to temperature-sensitive biomolecular interactions requires knowledge of the temperature inside the capillary. The simplest approach to finding temperature in CE employs a molecular probe with a temperature-dependent parameter. Up until now only spectral parameters of molecular probes were utilized for temperature measurements in CE. The arbitrary nature of spectral parameters leads to several inherent limitations that compromise the accuracy and precision of temperature determination. This paper introduces the concept of finding temperature in CE through the measurement of a nonspectral parameter of the molecular probeits diffusion coefficient. Diffusion is a fundamental property of molecules that depends only on the molecular structure of the probe, the nature of the environment, and the temperature. It is ideally suited for temperature measurements in CE if an approach for measuring the diffusion coefficient in a capillary with high precision is available. This work first develops an approach for measuring the diffusion coefficient in a capillary with a relative standard deviation of as low as 2.1%. It is then demonstrated that such precise measurements of the diffusion coefficient could facilitate accurate temperature determination in CE with a precision of 1 degrees C. This new method was used to study the effect on temperature of different amounts of joule heat generated and different efficiencies of heat dissipation. The nonspectroscopic nature of the method makes it potentially applicable to nonspectroscopic detection schemes, for example, electrochemical and mass spectrometric detection.  相似文献   
9.
Rate and equilibrium constants of weak noncovalent molecular interactions are extremely difficult to measure. Here, we introduced a homogeneous approach called equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM) to determine k(on), k(off), and K(d) of weak (K(d) > 1 μM) and fast kinetics (relaxation time, τ < 0.1 s) in quasi-equilibrium for multiple unlabeled ligands simultaneously in one microreactor. Conceptually, an equilibrium mixture (EM) of a ligand (L), target (T), and a complex (C) is prepared. The mixture is introduced into the beginning of a capillary reactor with aspect ratio >1000 filled with T. Afterward, differential mobility of L, T, and C along the reactor is induced by an electric field. The combination of differential mobility of reactants and their interactions leads to a change of the EM peak shape. This change is a function of rate constants, so the rate and equilibrium constants can be directly determined from the analysis of the EM peak shape (width and symmetry) and propagation pattern along the reactor. We proved experimentally the use of ECEEM for multiplex determination of kinetic parameters describing weak (3 mM > K(d) > 80 μM) and fast (0.25 s ≥ τ ≥ 0.9 ms) noncovalent interactions between four small molecule drugs (ibuprofen, S-flurbiprofen, salicylic acid and phenylbutazone) and α- and β-cyclodextrins. The affinity of the drugs was significantly higher for β-cyclodextrin than α-cyclodextrin and mostly determined by the rate constant of complex formation.  相似文献   
10.
We coin the term "smart aptamers" -- aptamers with predefined binding parameters (k(on), k(off), Kd) of aptamer-target interaction. Aptamers, in general, are oligonucleotides, which are capable of binding target molecules with high affinity and selectivity. They are considered as potential therapeutic targets and also thought to rival antibodies in immunoassay-like analyses. Aptamers are selected from combinatorial libraries of oligonucleotides by affinity methods. Until now, technological limitations have precluded the development of smart aptamers. Here, we report on two kinetic capillary electrophoresis techniques applicable to the selection of smart aptamers. Equilibrium capillary electrophoresis of equilibrium mixtures was used to develop aptamers with predefined equilibrium dissociation constants (Kd), while nonequilibrium capillary electrophoresis of equilibrium mixtures facilitated selection of aptamers with different dissociation rate constants (k(off)). Selections were made for MutS protein, for which aptamers have never been previously developed. Both theoretical and practical aspects of smart aptamer development are presented, and the advantages of this new type of affinity probes are described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号