首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
化学工业   18篇
建筑科学   2篇
能源动力   6篇
轻工业   1篇
无线电   2篇
一般工业技术   4篇
自动化技术   1篇
  2020年   1篇
  2019年   1篇
  2016年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
Nanocrystalline thin films of important surface roughness and complexity were prepared by screen-printing of commercial TiO2 powder. The screen-printed titania films were tested in the photocatalytic decomposition reaction of methyl orange under UV light (350 nm). The photocatalytic activity strongly depends on the titania paste components and especially on the presence of a surface modifier (acetyl acetone) combined with a rheology controlling agent (ethyl cellulose). This results in improvement of the paste viscosity and optimization of the films morphology. Experiments under direct full sunlight illumination prove the importance of the screen-printed films for practical applications.  相似文献   
2.
Liquid crystalline (LC) polyurethanes were made from two diisocyanates (flexible HMDI and stiff TDI) (DIs), mesogenic diol (D) and a polybutadiene-diol (B) with stoichiometric ratios of reactive hydroxy (OH) and isocyanate (NCO) groups ((NCO)DI/((OH)D+(OH)B)=1/1). Two- (B/DIs, D/DIs) and three-component ((D+B)/DIs, D/B=1/1 by weight) polymers were prepared and their dielectric, dynamic mechanical and DSC behavior was investigated. For neat B, the glass transition temperature TgB (∼−46 °C) was detected. Two-component B/HMDI and B/TDI polymers have exhibited a homogeneous structure with the glass transition temperatures TgU∼−9 and 2 °C. On the other hand, for D/DI polymers on cooling from the melt and subsequent heating the glass transitions at TgU∼41 °C (D/HMDI) and 58 °C (D/TDI) together with nematic and smectic mesophases were found. In three-component systems, additional glass transitions at TgB∼−41 °C (B/D/HMDI) and −31 °C (B/D/TDI) were observed. This means that the polymers exhibit a distinct two-phase structure with soft polybutadiene (B) and hard polyurethane (D/DI) phases. In hard polyurethane phase, the glass transitions at TgU and LC mesophases similar to those found in two-component D/DI polyurethanes were detected. Dielectric and dynamic mechanical results correlate well with DSC measurements.  相似文献   
3.
Nanocomposites based on sequential semi–interpenetrating polymer networks (semi–IPNs) of crosslinked polyurethane and linear poly(2‐hydroxyethyl methacrylate) filled with 1–15 wt % of nanofiller densil were prepared and investigated. Nanofiller densil used in an attempt to control the microphase separation of the polymer matrix by polymer–filler interactions. The morphology (SAXS, AFM), mechanical properties (stress–strain), thermal transitions (DSC) and polymer dynamics (DRS, TSDC) of the nanocomposites were investigated. Special attention has been paid to the raising of the hydration properties and the dynamics of water molecules in the nanocomposites in the perspective of biomedical applications. Nanoparticles were found to aggregate partially for higher than 3 and 5 wt % filler loading in semi–IPNs with 17 and 37 wt % PHEMA, respectively. The results show that the good hydration properties of the semi–IPN matrix are preserved in the nanocomposites, which in combination with results of thermal and dielectric techniques revealed also the existence of polymer–polymer and polymer–filler interactions. These interactions results also in the improvement of physical and mechanical properties of the nanocomposites in compare with the neat matrix. The improvement of mechanical properties in combination with hydrophilicity and biocompatibility of nanocomposites are promising for use these materials for biomedical application namely as surgical films for wound treatment and as material for producing the medical devises. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43122.  相似文献   
4.
Effects of silica and silica/titania nanoparticles on glass transition and segmental dynamics of poly(dimethylsiloxane) (PDMS) were studied for composites of a core–shell type using differential scanning calorimetry, thermally stimulated depolarization current, and dielectric relaxation spectroscopy techniques. Strong interactions between the filler and the polymer suppress crystallinity (Tc, Xc) and affect significantly the evolution of the glass transition in the nanocomposites. The segmental relaxation associated with the glass transition consists of three contributions, arising, in the order of decreasing mobility, from the bulk (unaffected) amorphous polymer fraction (α relaxation), from polymer chains restricted between condensed crystal regions (αc relaxation), and from the semi‐bound polymers in an interfacial layer with strongly reduced mobility due to interactions with surface hydroxyls of silica and silica/titania nanoparticles (α′ relaxation). The evolution of surface affected CH3 groups, as well as the degree of interaction of PDMS molecules with surface hydroxyl groups as a function of treatment temperature, was assessed by Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis. The effectiveness of silica/PDMS and silica/titania/PDMS nanocomposites as hydrophobic coatings was investigated by static contact angle measurements. It was shown that the presence of titania nanoparticles and adsorbed PDMS promotes the hydrophobic properties of the PDMS coating after treatment in the 80–650°C range. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41154.  相似文献   
5.
Titanium dioxide nanocrystalline thin films were prepared by applying the sol-gel dipping technique using two different titanium (IV) alkoxides: titanium isopropoxide and titanium butoxide. Morphological, structural characterization and examination of the fractal properties were performed by atomic force microscopy (AFM). The effect of the nature of the precursor on the hydrolysis rate and the resulting particle size distribution, roughness, and surface complexity of the TiO2 films was investigated. Titanium isopropoxide presents higher hydrolysis rates leading to more rough and complex characteristics whereas titanium butoxide films show a relatively smoother surface. Higher fractal dimension values and lower roughness were observed for titania films derived from titanium butoxide. In both cases the obtained films present a complex granular surface network of interconnected particles, suitable for practical applications.  相似文献   
6.
A porous organic–inorganic hybrid titania foam, prepared from a long chain organic surfactant, hexadecylamine (HDA) and a semiconductor powder was characterized by microscopic and spectroscopic techniques and photocatalytically evaluated for the solution phase decomposition of methyl orange under alkaline conditions. Kinetic data obtained indicate conformity with Langmuir–Hinshelwood kinetic model at the initial stages of the degradation reaction. An attempt was made to study the effect of experimental parameters including catalyst loading and dye concentration on photocatalytic degradation of MO. Results indicate that the rate of reaction is governed by adsorption of azo-dye into the surface of the photocatalyst materials and suggests an optimum catalyst load and dye concentration for the degradation reaction. Light absorption and scattering within the substrate reaction zone and arising from differences in optical properties of catalyst material, made it impossible to interpret entire kinetic data on the basis of a simple Langmuir–Hinshelwood kinetics. However, kinetic data obtained at the initial stages of the reaction suggest conformity with first-order kinetics. The foam promises to be a versatile material in that it can be used for the treatment of low concentrations of pollutants of biological, organic and inorganic origins in water and air.  相似文献   
7.
A study was performed to determine the effect of pH, alkalinity, natural organic matter (NOM) and dissolved oxygen in the performance of nitrogen and fluorine doped TiO2 (NF-TiO2) for the degradation of hepatotoxin microcystin-LR (MC-LR) in synthetic and natural water under visible light irradiation. The initial degradation rate of MC-LR was fastest under acidic conditions (3.50 ± 0.02 × 10−3 μM min−1 at pH 3.0) and decreased to 2.29 ± 0.07 × 10−3 and 0.54 ± 0.02 × 10−3 μM min−1 at pH 5.7 and 7.1, respectively. Attractive forces between the opposite charged MC-LR and NF-TiO2 are likely responsible for the enhancement in the photocatalytic decomposition of MC-LR resulting from increased interfacial adsorption. For carbonate buffered solutions, the photocatalytic activity of NF-TiO2 was reduced when increasing the carbonate concentration up to 150 mg CaCO3 L−1. The scavenging of radical species by the bicarbonate ion at pH 7.1 is discussed. In the presence of NOM, the degradation rates decreased as pH and initial concentration of the NOM increased. The inhibition was higher with fulvic acid than humic acid under alkaline conditions. Oxygenated solution yields higher NF-TiO2 photocatalytic degradation of MC-LR compared to nitrogen sparged solution at pH 5.7. The involvement of specific reactive oxygen species implicated in the photodegradation is proposed. Finally, no significant degradation is observed with various natural waters spiked with MC-LR under visible light (λ > 420 nm) but high removal was achieved with simulated solar light. This study provides a better understanding of the interactions and photocatalytic processes initiated by NF-TiO2 under visible and solar light. The results indicate solar photocatalytic oxidation is a promising technology for the treatment of water contaminated with cyanotoxins.  相似文献   
8.
The aim of this work was to study the photocatalytic activity of titanium dioxide (TiO2) against Listeria monocytogenes bacterial biofilm. Different TiO2 nanostructured thin films were deposited on surfaces such as stainless steel and glass using the doctor-blade technique. All the surfaces were placed in test tubes containing Brain Heart (BH) broth and inoculated with L. monocytogenes. Test tubes were then incubated for 10 days at 16 °C in order to allow biofilm development. After biofilm formation, the surfaces were illuminated by ultraviolet A light (UVA; wavelength of 315-400 nm). The quantification of biofilms was performed using the bead vortexing method, followed by agar plating and/or by conductance measurements (via the metabolic activity of biofilm cells). The presence of the TiO2 nanoparticles resulted in a fastest log-reduction of bacterial biofilm compared to the control test. The biofilm of L. monocytogenes for the glass nanoparticle 1 (glass surface modified by 16% w/v TiO2) was found to have decreased by 3 log CFU/cm2 after 90 min irradiation by UVA. The use of TiO2 nanostructured photocatalysts as alternative means of disinfecting contaminated surfaces presents an intriguing case, which by further development may provide potent disinfecting solutions. Surface modification using nanostructured titania and UV irradiation is an innovative combination to enhance food safety and economizing time and money.  相似文献   
9.
Polypropylene (PP) nanocomposites with multi‐walled carbon nanotubes (CNT) were produced by a small‐scale masterbatch melt dilution technique using five PP differing in melt flow index (MFI) and degree of maleination. PP used in a masterbatch has MFI = 12 (PP12), the others used PP which have MFI = 2 or MFI = 8. The state of CNT dispersion as assessed by melt rheological and morphological investigations indicated a better dispersion when using unmodified PP with MFI = 8 (PP8) and the masterbatch's PP12. Electrical conductivity results showed nanotube percolation at contents between 1.1 and 2.0 vol %, whereas lower values were obtained for the matrices with the best dispersion, i.e., PP8 and PP12. The dependencies of the relative Young's modulus on the CNT content showed that the maleinization improved the interfacial interactions between the components, especially in the case of maleated PP with MFI = 8 (PP‐MA8), but the better dispersion was prevented by the incompatibility between polar groups of PP‐MA and the nonpolar origin masterbatch PP12. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
10.
The presence of specific chemical additives in the redox electrolyte results in an efficient increase of the photovoltaic performance of dye-sensitized solar cells (DSCs). The most effective additives are 4-tert-butylpyridine (TBP), N-methylbenzimidazole (NMBI) and guanidinium thiocyanate (GuNCS) that are adsorbed onto the photoelectrode/electrolyte interface, thus shifting the semiconductor's conduction band edge and preventing recombination with triiodides. In a comparative work, we investigated in detail the action of TBP and NMBI additives in ionic liquid-based redox electrolytes with varying iodine concentrations, in order to extract the optimum additive/I2 ratio for each system. Different optimum additive/I2 ratios were determined for TBP and NMBI, despite the fact that both generally work in a similar way. Further addition of GuNCS in the optimized electrolytic media causes significant synergistic effects, the action of GuNCS being strongly influenced by the nature of the corresponding co-additive. Under the best operation conditions, power conversion efficiencies as high as 8% were obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号