首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   9篇
电工技术   4篇
化学工业   26篇
金属工艺   5篇
机械仪表   3篇
建筑科学   3篇
能源动力   6篇
轻工业   18篇
无线电   19篇
一般工业技术   31篇
冶金工业   17篇
自动化技术   17篇
  2023年   1篇
  2022年   7篇
  2021年   11篇
  2020年   5篇
  2019年   8篇
  2018年   5篇
  2017年   9篇
  2016年   13篇
  2015年   3篇
  2014年   7篇
  2013年   6篇
  2012年   8篇
  2011年   9篇
  2010年   7篇
  2009年   4篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1998年   3篇
  1997年   6篇
  1996年   3篇
  1994年   1篇
  1993年   3篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1980年   1篇
  1978年   1篇
  1976年   2篇
  1974年   1篇
  1958年   1篇
排序方式: 共有149条查询结果,搜索用时 62 毫秒
1.
2.
AgPb2B2V3O12 (B = Mg, Zn) ceramics with low sintering temperature were synthesized via the conventional solid-state reaction route. Rietveld refinements of the X-ray diffraction patterns confirm cubic symmetry with space group . The number of observed vibrational modes and those predicted by group theoretical calculations also confirm the space group. At the optimum sintering temperature of 750°C/4 hours, AgPb2Mg2V3O12 has a relative permittivity of 23.3 ± 0.2, unloaded quality factor () of 26 900 ± 500 GHz (), and temperature coefficient of resonant frequency of 19.3 ± 1 ppm/°C, while AgPb2Zn2V3O12 has the corresponding values of 26.4 ± 0.2, 28 400 ± 500 GHz () and –18.4 ± 1 ppm/°C at 590°C/4 hours. Microwave dielectric properties of a few reported garnets and Pb2AgB2V3O12 (B = Mg, Zn) ceramics were correlated with their intrinsic characteristics such as the Raman shifts as well as width of A1g Raman bands. Higher quality factor was obtained for lower full width at half-maxima (FWHMs) values of A1g modes. The increase in B-site bond valence contributes to high and low |τf| with the substitution of Zn2+ by Mg2+. Furthermore, the high ionic polarizability and unit cell volume with Zn2+substitution contribute to increased relative permittivity.  相似文献   
3.

Detection of the selfish node in a delay tolerant network (DTN) can sharply reduce the loss incurred in a network. The algorithm's current pedigree mainly focuses on the rely on nodes, records, and delivery performance. The community structure and social aspects have been overlooked. Analysis of individual and social tie preferences results in an extensive detection time and increases communication overhead. In this article, a heterogeneous DTN topology with high-power stationary nodes and mobile nodes on Manhattan's accurate map is designed. With the increasing complexity of social ties and the diversified nature of topology structure, there need for a method that can effectively capture the essence within the speculated time. In this article, a novel deep autoencoder-based nonnegative matrix factorization (DANMF) is proposed for DTN topology. The topology of social ties projected onto low-dimensional space leads to effective cluster formation. DANMF automatically learns an appropriate nonlinear mapping function by utilizing the features of data. Also, the inherent structure of the deep autoencoder is nonlinear and has strong generalization. The membership matrices extracted from the DANMF are used to design the weighted cumulative social tie that eventually, along with the residual energy, is used to detect the network's selfish node. The testing of the designed model is carried out on the real dataset of MIT reality. The proficiency of the developed algorithm has been well tested and proved at every step. The methods employed for social tie extraction are NMF and DANMF. The methodology is rigorously experimented on various scenarios and has improved around 80% in the worst-case scenario of 40% nodes turning selfish. A comprehensive comparison is made with the other existing state-of-the-art methods which are also incentive-based approaches. The developed method has outperformed and has shown the supremacy of the current methods to capture the latent, hidden structure of the social tie.

  相似文献   
4.
Sustainable development has become one of the leading global issues over the period of time. Currently, implementation of sustainability in supply chain has been continuously in center of attention due to introducing stringent legislations regarding environmental pollution by various governments and increasing stakeholders’ concerns toward social injustice. Unfortunately, literature is still scarce on studies considering all three dimensions (economical, environmental and social) of sustainability for the supply chain. An effective supply chain network design (SCND) is very important to implement sustainability in supply chain. This study proposes an uncertain SCND model that minimizes the total supply chain-oriented cost and determines the opening of plants, warehouses and flow of materials across the supply chain network by considering various carbon emissions and social factors. In this study, a new AHP and fuzzy TOPSIS-based methodology is proposed to transform qualitative social factors into quantitative social index, which is subsequently used in chance-constrained SCND model with an aim at reducing negative social impact. Further, the carbon emission of supply chain is estimated by considering a composite emission that consists of raw material, production, transportation and handling emissions. In the model, a carbon emission cap is imposed on total supply chain to reduce the carbon footprint of supply chain. To solve the proposed model, a code is developed in AMPL software using a nonlinear solver SNOPT. The applicability of the proposed model is illustrated with a numerical example. The sensitivity analysis examines the effects of reducing carbon footprint cap, negative social impacts and varying probability on the total cost of the supply chain. It is observed that a stricter carbon cap over supply chain network leads to opening of more plants across the supply chain. In addition, carbon footprint of supply chain is found to be decreased in certain extent with the reduction in negative social impacts from suppliers. The carbon footprint of the supply chain is found to be reduced with increasing certainty of material supply from the suppliers. The total supply chain cost is observed to be augmented with increasing probability.  相似文献   
5.
Efficient utilization of hydrogen generated during the reactions of nano-silicon/water and nano-aluminum/water in internal combustion engine has been investigated in the current work. Engine performance and emission studies of formulated and stabilized nanoemulsion fuels (water in diesel W/D), nano-aluminum in water/diesel (W/DA) and water in nano-silicon/diesel (W/DS) have been compared with those of diesel. Experimental investigations showed reduction in brake specific fuel consumption (BSFC) by 21% and 37%; rise in brake thermal efficiency (BTE) by 16% and 14% when engine was fueled with W/DA and W/DS respectively. For nanoemulsion fuels an increase in induced power was also recorded. Brake mean effective pressure, BTE and NOx emission dropped for W/D due to reduced exhaust gas temperatures. Nevertheless due to elevated peak cylinder pressures and exhaust gas temperatures a marginal rise in NOx, CO, HC and radiative heat emissions was observed with W/DA and W/DS.  相似文献   
6.
The paper presents the result of an experimental investigation on the micro machining of electrically non-conductive e-glass–fibre–epoxy composite during electrochemical spark machining using specially designed square cross section with centrally micro hole brass tool and different diameter round-shaped micro tools made of IS-3748 steel. A micro electrochemical spark machining (ECSM) setup has been designed, fabricated and used for conducting the experiments. According to the Taguchi method-based design, the specific numbers of experiments have been carried out to investigate the influence of the fabricated ECSM parameters on the material removal rate and overcut on generated hole radius. Test results show that the material removal rate is maximum when machining was performed at higher setting value of D.C. supply voltage (e.g. 70?V), moderate setting value of electrolytic concentration (e.g. 80?g/l) and 180-mm gap between electrodes. Taking significant machining parameters into consideration and using multiple linear regression, mathematical modes for material removal rate and overcut on hole radius are established to investigate the influence of cutting parameters during micro-ECSM. The influence of machining parameters on machined hole and special shape contour quality are also analysed through different scanning electron micrographs. Confirmation test results established the fact that the developed mathematical models are appropriate for effectively representing the machining performance criteria.  相似文献   
7.
8.
The present work attempts to investigate the propagation of one-dimensional electromagneto-thermoelastic plane waves in an isotropic unbounded thermally and electrically conducting media with finite conductivity in the context of the theory of thermoelasticity of Green and Naghdi type-II. The heat conduction equation is affected with the Thomson coe?cient. Basic governing equations are modified by using Green–Naghdi theory of type-II. Our problem formulation derives two different systems. The first system is found to be coupled with the thermal field and represents the longitudinal wave. However, the second system represents transverse wave that is uncoupled with the thermal field. In both the cases, we identify waves that are affected with the magnetic field. Asymptotic expansions of dispersion relation solutions and various components of plane waves such as phase velocity, specific loss, and penetration depth are derived analytically for high- and low-frequency values in all cases. Analytical results predicting the limiting behavior of longitudinal and transverse waves are verified with the numerical results. The results of the present study are compared with the results of the thermoelastic case, and a detailed analysis of the effects of presence of the magnetic field under this theory has been presented.  相似文献   
9.
The present prospective study examines proportions of maternal erythrocyte fatty acids across gestation and their association with cord erythrocyte fatty acids in normotensive control (NC) and preeclamptic pregnancies. We hypothesize that maternal fatty acid status in early pregnancy influences fetal fatty acid stores in preeclampsia. 137 NC women and 58 women with preeclampsia were included in this study. Maternal blood was collected at 3 time points during pregnancy (16–20th weeks, 26–30th weeks and at delivery). Cord blood was collected at delivery. Fatty acids were analyzed using gas chromatography. The proportions of maternal erythrocyte α‐linolenic acid, docosahexaenoic acid, nervonic acid, and monounsaturated fatty acids (MUFA) (p < 0.05 for all) were lower while total n‐6 fatty acids were higher (p < 0.05) at 16–20th weeks of gestation in preeclampsia as compared with NC. Cord 18:3n‐3, 22:6n‐3, 24:1n‐9, MUFA, and total n‐3 fatty acids (p < 0.05 for all) were also lower in preeclampsia as compared with NC. A positive association was observed between maternal erythrocyte 22:6n‐3 and 24:1n‐9 at 16–20th weeks with the same fatty acids in cord erythrocytes (p < 0.05 for both) in preeclampsia. Our study for the first time indicates alteration in maternal erythrocyte fatty acids at 16th weeks of gestation which is further reflected in cord erythrocytes at delivery in preeclampsia.  相似文献   
10.
Nitroxide-mediated radical polymerization of a tailor-made acrylate carrying a 1,2,3-triazole group with an undecanoyl spacer affords a well-defined (Mn = 7860 g mol−1 and D = 1.39) neutral polyacrylate precursor. A series of 1,2,3-triazolium-based poly(ionic liquid)s (TPILs) is then obtained by straightforward quaternization of the 1,2,3-triazole groups with methyl iodide and subsequent anion metathesis reactions. Among the prepared materials, TPIL with bis(trifluoromethane)sulfonimide anion exhibits low glass transition temperature (Tg = −40 °C), high thermal stability (Td10 = 325 °C) and anhydrous ionic conductivity of 4 × 10−6 S cm−1 at 30 °C, as measured by differential scanning calorimetry, thermogravimetric analysis and broadband dielectric spectroscopy, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号