首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
能源动力   6篇
无线电   1篇
  2020年   1篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Recent concerns over the environment, increasing fuel prices and scarcity of its supply have promoted the interest in development of the alternative sources for petroleum fuels. At present, biodiesel is commercially produced from the refined edible vegetable oils such as sunflower oil, palm oil and soybean oil, etc. by alkaline-catalyzed esterification process. This process is not suitable for production of biodiesel from many unrefined non-edible vegetable oils because of their high acid value. Hence, a two-step esterification method is developed to produce biodiesel from high FFA vegetable oils. The biodiesel production method consists of acid-catalyzed pretreatment followed by an alkaline-catalyzed transesterification. The important properties of methyl esters of rubber seed oil are compared with other esters and diesel. Pure rubber seed oil, diesel and biodiesel are used as fuels in the compression ignition engine and the performance and emission characteristics of the engine are analyzed. The lower blends of biodiesel increase the brake thermal efficiency and reduce the fuel consumption. The exhaust gas emissions are reduced with increase in biodiesel concentration. The experimental results proved that the use of biodiesel (produced from unrefined rubber seed oil) in compression ignition engines is a viable alternative to diesel.  相似文献   
2.
The increasing industrialization and motorization of the world has led to a steep rise for the demand of petroleum products. Petroleum based fuels are obtained from limited reserves. These finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these resources are facing a foreign exchange crisis, mainly due to the import of crude oil. Hence, it is necessary to look for alternative fuels, which can be produced from materials available within the country. In addition, the use of vegetable oil as fuel is less polluting than petroleum fuels. This paper reviews the production and characterization of vegetable oil as well as the experimental work carried out in various countries in this field. In addition, the scope and challenges being faced in this area of research are clearly described.  相似文献   
3.
Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas–air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation.  相似文献   
4.
Vegetable oils pose some problems when subjected to prolonged usage in compression ignition engines because of their high viscosity and low volatility. The common problems are poor atomization, carbon deposits, ring sticking, fuel pump failure, etc. Converting the high viscosity vegetable oil into its blends or esters can minimize these problems. The various blends of rubber seed oil and diesel were prepared and its important properties such as viscosity, calorific value, flash point, fire point, etc. were evaluated and compared with that of diesel. The blends were then subjected to engine performance and emission tests and compared with that for diesel. It was found that 50–80% of rubber seed oil blends gave the best performance. Long run tests were conducted using optimized blend and diesel. It was found that blend fueled engine has higher carbon deposits inside combustion chamber than diesel-fueled engine. Utilization of blends requires frequent cleaning of fuel filter, pump and the combustion chamber. Hence, it is recommended that rubber seed oil–diesel blend fuel is more suitable for rural power generation.  相似文献   
5.
In recent years, much research has been carried out to find suitable alternative fuel to petroleum products. The use of renewable fuels like ethanol, biogas and biodiesel in diesel engines is significant in this context. The properties of biodiesel depend on the type of the vegetable oil used for the trans-esterification process. Experimental analysis of the engine with various biodiesel and its blends requires much effort and time. Hence, a theoretical model is developed to analyze the performance characteristics of the compression ignition engine fueled by biodiesel and its blends. In the present investigation, biodiesel is produced using unrefined rubber seed oil. A two-step trans-esterification process (i.e. acid–alkaline trans-esterification) is developed for the production of methyl-esters of rubber seed oil. The properties of this biodiesel are closely matched with those of diesel fuel. The performance tests are carried out on a C.I. engine using biodiesel and its blends with diesel (B20 and B100) as fuel. The effects of relative air-fuel ratio and compression ratio on the engine performance for different fuels are also analyzed using this model. The comparison of theoretical and experimental results are presented.  相似文献   
6.
Wireless Personal Communications - The 5th Generation (5G) of wireless communication will be heterogeneous to support various traffic types and applications. Generalized Frequency Division...  相似文献   
7.
Cetane number (CN) is one of the most significant properties to specify the ignition quality of any fuel for internal combustion engines. The CN of biodiesel varies widely in the range of 48–67 depending upon various parameters including the oil processing technology and climatic conditions where the feedstock (vegetable oil) is collected. Determination of the CN of a fuel by an experimental procedure is a tedious job for the upcoming biodiesel production industry. The fatty acid composition of base oil predominantly affects the CN of the biodiesel produced from it. This paper discusses the currently available CN estimation techniques and the necessity of accurate prediction of CN of biodiesel. Artificial Neural Network (ANN) models are developed to predict the CN of any biodiesel. The present paper deals with the application of multi-layer feed forward, radial base, generalized regression and recurrent network models for the prediction of CN. The fatty acid compositions of biodiesel and the experimental CNs are used to train the networks. The parameters that affect the development of the model are also discussed. ANN predicted CNs are found to be in agreement with the experimental CNs. Hence, the ANN models developed can be used reliably for the prediction of CN of biodiesel.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号