首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学工业   1篇
建筑科学   1篇
无线电   5篇
一般工业技术   6篇
冶金工业   1篇
自动化技术   1篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1998年   1篇
  1984年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
A complementary cross coupled BAW parallel resonance oscillator offering ultra-low power consumption and a good phase noise performance is presented. The power consumption in this structure is 50?% less than the classical NMOS based structure without any penalty in the phase noise performance. Rather, this structure serves to reduce the noise contribution of the biasing transistors at the output leading to a marginal improvement in thermal noise performance as compared to the NMOS based structure. Furthermore, the flicker noise upconversion of this complementary structure can be minimized by proper design considerations. The power consumption in case of such a complementary structure based oscillator (designed in 180nm CMOS process) employing a 2.497?GHz BAW resonator is around 675???W for an amplitude of 300?mV with a phase noise of ?140?dBc/Hz at 1?MHz offset.  相似文献   
2.
We report on the fabrication of a new type of nanotemplate surface consisting of a hexagonally well-ordered array of one monolayer deep holes with a tunable size of about 4 nm (2) and a fixed spacing of 7 nm. The nanohole array fabrication is based on the strain-relief trigonal network formed in the 2 monolayer Ag on Pt(111) system. Removing about 0.1 ML of the Ag top layer of this surface structure, for example, by He- or Ar-ion sputtering, leads to the formation of nanoholes at specific domains of the trigonal network, which are stable at room temperature.  相似文献   
3.
This paper presents an ultra-low power generic compensation scheme that is used to implement a real time clock based on an AlN-driven 1 MHz uncompensated silicon resonator achieving 3.2 ?W power dissipation at 1 V and ±10 ppm frequency accuracy over a 0-50°C temperature range. It relies on the combination of fractional division and frequency interpolation for coarse and fine tuning respectively. By proper calibration and application of temperature dependent corrections, any frequency below that of the uncompensated resonator can be generated yielding programmability, resonator fabrication tolerances and temperature drift compensation without requiring a PLL. To minimize the IC area, a dual oscillator temperature measurement concept based on a ring oscillator/resistor thermal sensor was implemented yielding a resolution of 0.04°C. The IC was fabricated on a 0.18 ?m 1P6M CMOS technology.  相似文献   
4.
Nano Research - Graphene nanoribbons (GNRs) have potential for applications in electronic devices. A key issue, thereby, is the fine-tuning of their electronic characteristics, which can be...  相似文献   
5.
Graphene nanoribbons (GNRs) have attracted much interest due to their largely modifiable electronic properties. Manifestation of these properties requires atomically precise GNRs which can be achieved through a bottom–up synthesis approach. This has recently been applied to the synthesis of width-modulated GNRs hosting topological electronic quantum phases, with valence electronic properties that are well captured by the Su–Schrieffer–Heeger (SSH) model describing a 1D chain of interacting dimers. Here, ultralow bandgap GNRs with charge carriers behaving as massive Dirac fermions can be realized when their valence electrons represent an SSH chain close to the topological phase boundary, i.e., when the intra- and interdimer coupling become approximately equal. Such a system has been achieved via on-surface synthesis based on readily available pyrene-based precursors and the resulting GNRs are characterized by scanning probe methods. The pyrene-based GNRs (pGNRs) can be processed under ambient conditions and incorporated as the active material in a field effect transistor. A quasi-metallic transport behavior is observed at room temperature, whereas at low temperature, the pGNRs behave as quantum dots showing single-electron tunneling and Coulomb blockade. This study may enable the realization of devices based on carbon nanomaterials with exotic quantum properties.  相似文献   
6.
Acetyl tri‐n‐butyl citrate (ATBC) and poly(ethyleneglycol)s (PEGs) with different molecular weights (from 400 to 10000) were used in this study to plasticize poly(L‐lactic acid) (PLA). The thermal and mechanical properties of the plasticized polymer are reported. Both ATBC and PEG are effective in lowering the glass transition (Tg) of PLA up to a given concentration, where the plasticizer reaches its solubility limit in the polymer (50 wt % in the case of ATBC; 15–30 wt %, depending on molecular weight, in the case of PEG). The range of applicability of PEGs as PLA plasticizers is given in terms of PEG molecular weight and concentration. The mechanical properties of plasticized PLA change with increasing plasticizer concentration. In all PLA/plasticizer systems investigated, when the blend Tg approaches room temperature, a stepwise change in the mechanical properties of the system is observed. The elongation at break drastically increases, whereas tensile strength and modulus decrease. This behavior occurs at a plasticizer concentration that depends on the Tg‐depressing efficiency of the plasticizer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1731–1738, 2003  相似文献   
7.
Technological advances in the field of microelectronic fabrication techniques have triggered a great interest in vacuum microelectronics. In contrast to solid‐state microelectronics, which entails scattering‐dominated electron transport in semiconducting solids, vacuum microelectronics relies on the scattering‐free, ballistic motion of electrons in vacuum. Since the first international conference on vacuum microelectronics substantial progress in this field has been made. The first technological devices using micrometer‐sized electron emitting structures are currently being commercialized. Field‐emission flat‐panel displays (FED) seem to be an especially promising competitor to LCD displays. Today there is only one mature technology for producing micro‐gated field‐emission arrays: the Spindt metal‐tip process. The drawbacks of this technology are expensive production, critical lifetime in vacuum, and high operating voltage. Carbon nanotubes (CNT) can be regarded as the potential second‐generation technology to the Spindt metal micro‐tip. In this review we show that the field emission (FE) behavior of CNT can be accurately described by Fowler–Nordheim tunneling and that the field‐enhancement factor β is the most prominent factor. Therefore the FE properties of a CNT thin film can be understood in terms of local field enhancement β(x,y), which can be determined with scanning anode field emission microscopy (SAFEM). To characterize the FE properties of an ensemble of electron emitters we used a statistical approach (as for thin film emitters), where f(β)dβ gives the number of emitters on a unit area with field‐enhancement factors within the interval [β,β + dβ]. We show that the field‐enhancement distribution function f(β) gives an almost complete characterization of the FE properties.  相似文献   
8.
9.
A 0.9 V 1.2 mA fully integrated radio data system (RDS) receiver for the 88-108 MHz FM broadcasting band is presented. Requiring only a few external components (matching network, VCO inductors, loop filter components), the receiver, which has been integrated in a standard digital 0.18 /spl mu/m CMOS technology, achieves a noise figure of 5 dB and a sensitivity of -86dBm. The circuit can be configured and the RDS data retrieved via an I/sup 2/C interface so that it can very simply be used as a peripheral in any portable application. A 250 kHz low-IF architecture has been devised to minimize the power dissipation of the baseband filters and FM demodulator. The frequency synthesizer consumes 250 /spl mu/A, the RF front-end 450 /spl mu/A while providing 40 dB of gain, the baseband filter and limiters 100 /spl mu/A, and the FM and BPSK analog demodulators 300 /spl mu/A. The chip area is 3.6 mm/sup 2/.  相似文献   
10.
We have examined the effect of submonolayer coverage of 1-pyrene butyric acid on charge carrier transport in reduced graphene oxide. We have modeled the interaction of 1-pyrene butyric acid molecules with graphene and determined the amount of charge transfer at the interface between the two materials. The effect of 1-pyrene butyric acid as electron acceptor was determined by transfer characteristics measurements on thin film transistors for thick layers. By using time-resolved photocurrent measurements we were able to detect a reduction of electron mobility in reduced graphene oxide for coverage as low as 0.08%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号