首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  国内免费   1篇
化学工业   1篇
金属工艺   3篇
建筑科学   1篇
能源动力   2篇
无线电   3篇
一般工业技术   7篇
冶金工业   3篇
自动化技术   6篇
  2023年   1篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2006年   2篇
  2003年   2篇
  1997年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Comprehensive analyses of the atomic structure using advanced analytical transmission electron microscopy-based methods combined with atom probe tomography confirm the presence of distinct glass–glass interfaces in a columnar Cu-Zr nanoglass synthesized by magnetron sputtering. These analyses provide first-time in-depth characterization of sputtered film nanoglasses and indicate that glass–glass interfaces indeed present an amorphous phase with reduced mass density as compared to the neighboring amorphous regions. Moreover, dedicated analyses of the diffusion kinetics by time-of-flight secondary ion mass spectroscopy (ToF SIMS) prove significantly enhanced diffusivity, suggesting fast transport along the low density glass–glass interfaces. The present results further indicate that sputter deposition is a feasible technique for reliable production of nanoglasses and that some of the concepts proposed for this new class of glassy materials are applicable.  相似文献   
2.
With the advent of new haptic feedback devices, researchers are giving serious consideration to the incorporation of haptic communication in collaborative virtual environments. For instance, haptic interactions based tools can be used for medical and related education whereby students can train in minimal invasive surgery using virtual reality before approaching human subjects. To design virtual environments that support haptic communication, a deeper understanding of humans′ haptic interactions is required. In this paper, human′s haptic collaboration is investigated. A collaborative virtual environment was designed to support performing a shared manual task. To evaluate this system, 60 medical students participated to an experimental study. Participants were asked to perform in dyads a needle insertion task after a training period. Results show that compared to conventional training methods, a visual-haptic training improves user′s collaborative performance. In addition, we found that haptic interaction influences the partners′ verbal communication when sharing haptic information. This indicates that the haptic communication training changes the nature of the users′ mental representations. Finally, we found that haptic interactions increased the sense of copresence in the virtual environment: haptic communication facilitates users′ collaboration in a shared manual task within a shared virtual environment. Design implications for including haptic communication in virtual environments are outlined.  相似文献   
3.
We investigated the thermodynamic and transport properties of buried interfaces with atom probe tomography. Owing to the 3D subnanometer resolution and single atom sensitivity of the method, it is possible to obtain composition profiles with high accuracy both along or normal to the interfaces. We have shown that the width of the chemical interface between the Fe and Cr system follows the Cahn–Hilliard relation with a gradient energy coefficient of 1.86 × 10?22 J nm2. Sharpening of the Ni/Cu interface as a result of kinetic control was directly observed. We investigated the grain boundary and triple junction transport in Fe/Cr and Ni/Cu. Cr segregation enthalpy into Fe triple junctions was found to be 0.076 eV, which falls in between the surface (0.159 eV) and grain boundary (0.03 eV) segregation enthalpies. In the investigated 563 K to 643 K (290 °C to 370 °C) range, Ni transport is 200 to 300 times faster in the triple junctions of Cu than in the grain boundaries. The diffusion activation enthalpy in the triple junctions is two-thirds that of the grain boundaries (0.86 and 1.24 eV, respectively). These investigations have shown that triple junctions are defects in their own right with characteristic segregation and diffusion properties: They are preferred segregation sites and can be considered as a diffusion shortcut in the grain boundary network.  相似文献   
4.
5.
Triple junctions (TJ), singular topological defects of the grain boundary (GB) structure, get a dominant role for grain growth and atomic transport in nanocrystalline matter. Here, we present detailed measurements by atom probe tomography, even of the temperature dependence of TJ transport of Ni in nanocrystalline Cu in the chemical regime of interdiffusion. An unexpected variation of the effective width of merging GBs with temperature is detected. It is demonstrated that proper measurement of TJ transport requires taking into account this remarkable effect. TJ diffusion is found to be a factor of about 200 faster than GB diffusion. Its activation energy amounts to only two-thirds of that of the GB.  相似文献   
6.
7.
8.
姚煜  RYAD Chellali 《计算机应用》2018,38(9):2495-2499
针对隐马尔可夫模型(HMM)在语音识别中存在的不合理条件假设,进一步研究循环神经网络的序列建模能力,提出了基于双向长短时记忆神经网络的声学模型构建方法,并将联结时序分类(CTC)训练准则成功地应用于该声学模型训练中,搭建出不依赖于隐马尔可夫模型的端到端中文语音识别系统;同时设计了基于加权有限状态转换器(WFST)的语音解码方法,有效解决了发音词典和语言模型难以融入解码过程的问题。与传统GMM-HMM系统和混合DNN-HMM系统对比,实验结果显示该端到端系统不仅明显降低了识别错误率,而且大幅提高了语音解码速度,表明了该声学模型可以有效地增强模型区分度和优化系统结构。  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号